PNP - 2N6040, 2N6042, NPN - 2N6043, 2N6045

Plastic Medium-Power Complementary Silicon Transistors

Plastic medium-power complementary silicon transistors are designed for general-purpose amplifier and low-speed switching applications.

Features

- High DC Current Gain $-h_{FE} = 2500$ (Typ) @ $I_C = 4.0$ Adc
- Collector–Emitter Sustaining Voltage @ 100 mAdc V_{CEO(sus)} = 60 Vdc (Min) – 2N6040, 2N6043 = 100 Vdc (Min) – 2N6042, 2N6045
- Low Collector-Emitter Saturation Voltage -
 - $V_{CE(sat)} = 2.0 \text{ Vdc} (Max) @ I_C = 4.0 \text{ Adc} 2N6043,44$ = 2.0 Vdc (Max) @ I_C = 3.0 Adc - 2N6042, 2N6045
- Monolithic Construction with Built–In Base–Emitter Shunt Resistors
- Epoxy Meets UL 94 V-0 @ 0.125 in
- ESD Ratings: Human Body Model, 3B > 8000 V Machine Model, C > 400 V
- These Devices are Pb-Free and are RoHS Compliant*

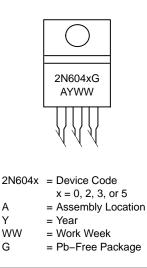
MAXIMUM RATINGS (Note 1)

Rating		Symbol	Value	Unit
Collector-Emitter Voltage	2N6040 2N6043	V _{CEO}	60	Vdc
	2N6042 2N6045		100	
Collector-Base Voltage	2N6040 2N6043	V _{CB}	60	Vdc
	2N6042 2N6045		100	
Emitter-Base Voltage		V _{EB}	5.0	Vdc
Collector Current	Continuous Peak	Ι _C	8.0 16	Adc
Base Current		Ι _Β	120	mAdc
Total Power Dissipation @ To Derate above 25°C	_C = 25°C	PD	75 0.60	W W/∘C
Operating and Storage Junct Temperature Range	ion	T _J , T _{stg}	-65 to +150	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. Indicates JEDEC Registered Data.

W. SEMMORPHILLING


www.onsemi.com

DARLINGTON, 8 AMPERES COMPLEMENTARY SILICON POWER TRANSISTORS 60 – 100 VOLTS, 75 WATTS

TO-220 CASE 221A STYLE 1

MARKING DIAGRAM

ORDERING INFORMATION

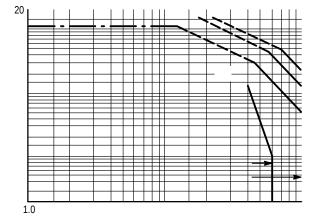
See detailed ordering and shipping information in the package dimensions section on page 5 of this data sheet.

*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

PNP – 2N6040, 2N6042, NPN – 2N6043, 2N6045

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction-to-Case	θJC	1.67	°C/W
Thermal Resistance, Junction-to-Ambient	θ _{JA}	57	°C/W


*ELECTRICAL CHARACTERISTICS (T_C = 25° C unless otherwise noted)

Characteristic		Symbol	Min	Max	Unit
OFF CHARACTERISTICS			•		
Collector–Emitter Sustaining Voltage $(I_C = 100 \text{ mAdc}, I_B = 0)$	2N6040, 2N6043 2N6042, 2N6045	V _{CEO(sus)}	60 100		Vdc
Collector Cutoff Current $(V_{CE} = 60 \text{ Vdc}, I_B = 0)$ $(V_{CE} = 100 \text{ Vdc}, I_B = 0)$	2N6040, 2N6043 2N6042, 2N6045	I _{CEO}		20 20	μΑ
	2N6040, 2N6043 2N6042, 2N6045 2N6040, 2N6043 2N6041, 2N6044 2N6042, 2N6045	I _{CEX}		20 20 200 200 200	μΑ
Collector Cutoff Current $(V_{CB} = 60 \text{ Vdc}, I_E = 0)$ $(V_{CB} = 100 \text{ Vdc}, I_E = 0)$	2N6040, 2N6043 2N6042, 2N6045	I _{CBO}		20 20	μΑ
Emitter Cutoff Current (V _{BE} = 5.0 Vdc, I _C = 0) ON CHARACTERISTICS		I _{EBO}	-	2.0	mAdc
DC Current Gain $(l_0 = 4.0 \text{ Adg. } V_{cr} = 4.0 \text{ V/dg.})$	206040 206043	h _{FE}	4000	00.000	-

$(I_{C} = 4.0 \text{ Adc}, V_{CE} = 4.0 \text{ Vdc})$ $(I_{C} = 3.0 \text{ Adc}, V_{CE} = 4.0 \text{ Vdc})$ $(I_{C} = 8.0 \text{ Adc}, V_{CE} = 4.0 \text{ Vdc})$	2N6040, 2N6043, 2N6042, 2N6045 All Types		1000 1000 100	20.000 20,000 -	
	2N6040, 2N6043, 2N6042, 2N6045 All Types	V _{CE(sat)}	- - -	2.0 2.0 4.0	Vdc
Base–Emitter Saturation Voltage ($I_C = 8.0 \text{ Adc}, I_B = 80 \text{ mAdc}$)		V _{BE(sat)}	-	4.5	Vdc
Base–Emitter On Voltage (I_C = 4.0 Adc, V_{CE} = 4.0 Vdc)		V _{BE(on)}	-	2.8	Vdc

DYNAMIC CHARACTERISTICS

Small Signal Current Gain ($I_C = 3.0 \text{ Adc}$, $V_{CE} = 4.0 \text{ Vdc}$, $f = 1.0 \text{ MHz}$)		h _{fe}	4.0	-	
Output Capacitance ($V_{CB} = 10$ Vdc, $I_E = 0$, f = 0.1 MHz)	2N6040/2N6042 2N6043/2N6045	C _{ob}	-	300 200	pF
Small–Signal Current Gain ($I_C = 3.0 \text{ Adc}$, $V_{CE} = 4.0 \text{ Vdc}$, f = 1.0 kHz)		h _{fe}	300	-	

(AED @ T)]TJ569.1402 Tm2 m001 T657 #50573L0#0376#1410570#34090Lff26E867836--000050144000e152\$5=0582201151756 757, C29.14 0 om)T]110.1543 570. 3969.14 0 .C570.-/F8055.2022j78 0D 2N60e 5. ((SING Figure 5. Active-Region Safe Operating Area

onsemi, , and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or incruit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi