

74VHC374

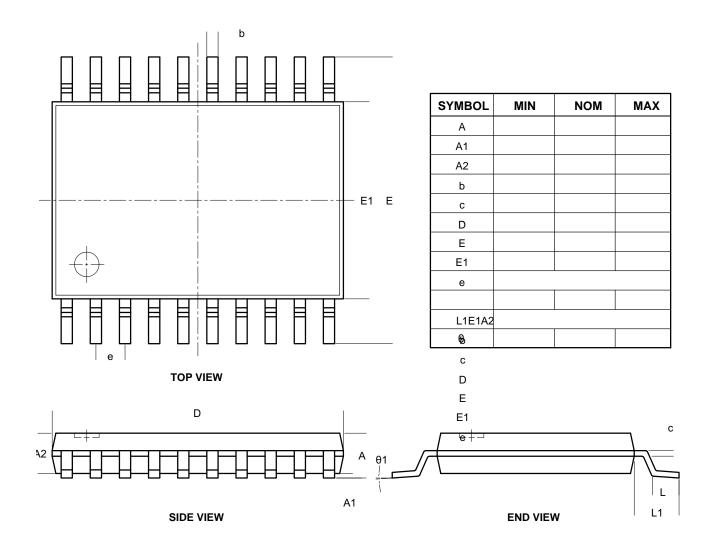
74VHC374

DC ELECTRICAL CHARACTERISTICS

				T _A = 25 °C			T _A = -40 °C		
Symbol	Parameter	Conditions	V _{CC} (V)	Min	Тур	Max	Min	Max	Unit
V _{IH}	HIGH Level								

74VHC374

AC ELECTRICAL CHARACTERISTICS


		Conditions			T _A = 25 °C			T _A = -40 °C			
Symbol	Parameter			V _{CC} (V)	Min	Тур	Max	Min	Max	Unit	
t _{PLH} , t _{PHL}	Propagation Delay Time (CP to O _n)		C _L = 15 pF	3.3 ±0.3	-	8.1	12.7	1.0	15.0	ns	
			C _L = 50 pF	-	10.6	16.2	1.0	18.5			
			C _L = 15 pF	5.0 ±0.5	-	5.4	8.1	1.0	9.5	ns	
			C _L = 50 pF	1	-	6.9	10.1	1.0	11.5		
t_{PZL},t_{PZH}	3–STATE Output Enable Time	$R_L = 1 \text{ k}\Omega$	C _L = 15 pF	3.3 ±0.3	-	7.1	11.0	1.0	13.0	ns	
			C _L = 50 pF]	-	9.6	14.5	1.0	16.5		
			C _L = 15 pF	5.0 ±0.5	-	5.1	7.6	1.0	9.0	ns	
			C _L = 50 pF] [-	6.6	9.6	1.0	11.0		
$t_{\text{PLZ}},t_{\text{PHZ}}$	3–STATE Output Disable Time	$R_L = 1 \text{ k}\Omega$	$C_L = 50 pF$	3.3 ±0.3	-	10.2	14.0	1.0	16.0	ns	
			C _L = 50 pF	5.0 ±0.5	-	6.1	8.8	1.0	10.0		
toslh,	Output to	(Note 6)	C _L = 50 pF	3.3 ±0.3	_	_	1.5	-	1.5	ns	
toshl	Output Skew		C _L = 50 pF	5.0 ±0.5	-	-	1.0	-	1.0		
f _{MAX}	Maximum Clock Frequency			C _L = 15 pF	3.3 ±0.3	80	130	-	70	-	MHz
			C _L = 50 pF] [55	85	-	50	-		
			C _L = 15 pF	5.0 ±0.5	130	185	-	110	_		
			C _L = 50 pF		85	120	-	75	_		
C _{IN}	Input Capacitance	V _{CC} = Open			-	4	10	_	10	pF	
C _{OUT}	Output Capacitance	V _{CC} = 5.0 V			-	6	-	-	-	pF	
C _{PD}	Power Dissipation Capacitance	(Note 7)			-	32	-	-	-	pF	

AC OPERATING REQUIREMENTS

			T _A = 25 °C			T _A = -40 °C		1	
Symbol	Parameter	V _{CC} (V)	Min	Тур	Max	Min	Max	Unit	
$t_W(H),$ $t_W(L)$	Minimum Pulse Width (CP)	3.3 ±0.3					-		

^{6.} Parameter guaranteed by design. t_{OSLH} = |t_{PLH max} - t_{PLH min}|; t_{OSHL} = |t_{PHL max} - t_{PHL min}|
7. C_{PD} is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load. Average operating current can be obtained by the equation: I_{CC} (opr.) = C_{PD} · V_{CC} · f_{IN} + I_{CC}/8 (per F/F). The total C_{PD} when n pcs. of the Octal D Flip-Flop operates can be calculated by the equation: C_{PD} (total) = 20 + 12n.

DATE 19 MAR 2009

