74VHC374 ## 74VHC374 ## DC ELECTRICAL CHARACTERISTICS | | | | | T _A = 25 °C | | | T _A = -40 °C | | | |-----------------|------------|------------|---------------------|------------------------|-----|-----|-------------------------|-----|------| | Symbol | Parameter | Conditions | V _{CC} (V) | Min | Тур | Max | Min | Max | Unit | | V _{IH} | HIGH Level | ### 74VHC374 #### **AC ELECTRICAL CHARACTERISTICS** | | | Conditions | | | T _A = 25 °C | | | T _A = -40 °C | | | | |-------------------------------------|--|---------------------------|------------------------|------------------------|------------------------|------|------|-------------------------|------|------|-----| | Symbol | Parameter | | | V _{CC} (V) | Min | Тур | Max | Min | Max | Unit | | | t _{PLH} , t _{PHL} | Propagation
Delay Time
(CP to O _n) | | C _L = 15 pF | 3.3 ±0.3 | - | 8.1 | 12.7 | 1.0 | 15.0 | ns | | | | | | C _L = 50 pF | - | 10.6 | 16.2 | 1.0 | 18.5 | | | | | | | | C _L = 15 pF | 5.0 ±0.5 | - | 5.4 | 8.1 | 1.0 | 9.5 | ns | | | | | | C _L = 50 pF | 1 | - | 6.9 | 10.1 | 1.0 | 11.5 | | | | t_{PZL},t_{PZH} | 3–STATE
Output Enable
Time | $R_L = 1 \text{ k}\Omega$ | C _L = 15 pF | 3.3 ±0.3 | - | 7.1 | 11.0 | 1.0 | 13.0 | ns | | | | | | C _L = 50 pF |] | - | 9.6 | 14.5 | 1.0 | 16.5 | | | | | | | C _L = 15 pF | 5.0 ±0.5 | - | 5.1 | 7.6 | 1.0 | 9.0 | ns | | | | | | C _L = 50 pF |] [| - | 6.6 | 9.6 | 1.0 | 11.0 | | | | $t_{\text{PLZ}},t_{\text{PHZ}}$ | 3–STATE
Output Disable
Time | $R_L = 1 \text{ k}\Omega$ | $C_L = 50 pF$ | 3.3 ±0.3 | - | 10.2 | 14.0 | 1.0 | 16.0 | ns | | | | | | C _L = 50 pF | 5.0 ±0.5 | - | 6.1 | 8.8 | 1.0 | 10.0 | | | | toslh, | Output to | (Note 6) | C _L = 50 pF | 3.3 ±0.3 | _ | _ | 1.5 | - | 1.5 | ns | | | toshl | Output Skew | | C _L = 50 pF | 5.0 ±0.5 | - | - | 1.0 | - | 1.0 | | | | f _{MAX} | Maximum Clock
Frequency | | | C _L = 15 pF | 3.3 ±0.3 | 80 | 130 | - | 70 | - | MHz | | | | | C _L = 50 pF |] [| 55 | 85 | - | 50 | - | | | | | | | C _L = 15 pF | 5.0 ±0.5 | 130 | 185 | - | 110 | _ | | | | | | | C _L = 50 pF | | 85 | 120 | - | 75 | _ | | | | C _{IN} | Input
Capacitance | V _{CC} = Open | | | - | 4 | 10 | _ | 10 | pF | | | C _{OUT} | Output
Capacitance | V _{CC} = 5.0 V | | | - | 6 | - | - | - | pF | | | C _{PD} | Power
Dissipation
Capacitance | (Note 7) | | | - | 32 | - | - | - | pF | | ## **AC OPERATING REQUIREMENTS** | | | | T _A = 25 °C | | | T _A = -40 °C | | 1 | | |--------------------|--------------------------|---------------------|------------------------|-----|-----|-------------------------|-----|------|--| | Symbol | Parameter | V _{CC} (V) | Min | Тур | Max | Min | Max | Unit | | | $t_W(H),$ $t_W(L)$ | Minimum Pulse Width (CP) | 3.3 ±0.3 | | | | | - | | | ^{6.} Parameter guaranteed by design. t_{OSLH} = |t_{PLH max} - t_{PLH min}|; t_{OSHL} = |t_{PHL max} - t_{PHL min}| 7. C_{PD} is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load. Average operating current can be obtained by the equation: I_{CC} (opr.) = C_{PD} · V_{CC} · f_{IN} + I_{CC}/8 (per F/F). The total C_{PD} when n pcs. of the Octal D Flip-Flop operates can be calculated by the equation: C_{PD} (total) = 20 + 12n. DATE 19 MAR 2009