onsemi

IGBT A A a 650 V, 40 A AFGHL40T65RQDN

Using novel field stop IGBT technology, **onsemi**'s new series of FS4 IGBTs offer the optimum performance for automotive applications. This technology is Short circuit rated and offers high figure of merit with low conduction and switching losses.

Features

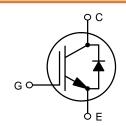
- Maximum Junction Temperature: $T_J = 175^{\circ}C$
- Positive Temperature Co-efficient for Easy Parallel Operation
- High Current Capability
- Low Saturation Voltage: $V_{CE(Sat)} = 1.6 V (Typ.) @ I_C = 40 A$
- 100% of the Parts Tested for ILM (Note 2)
- High Input Impedance
- Fast Switching
- Tightened Parameter Distribution
- This Device is Pb-Free and RoHS Compliant

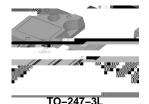
Typical Applications

• E-compressor for HEV/EV, PTC heater for HEV/EV

MAXIMUM RATINGS

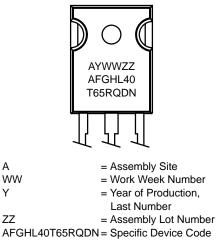
Rating	Symbol	Value	Unit
Collector-to-Emitter Voltage	V _{CES}	650	V
Gate-to-Emitter Voltage Transient Gate-to-Emitter Voltage	V _{GES}	±20 ±30	V
Collector Current (Note 1) @ $T_C = 25^{\circ}C$ @ $T_C = 100^{\circ}C$	Ι _C	46 40	A
Pulsed Collector Current (Note 2)	I _{LM}	160	А
Pulsed Collector Current (Note 3)	I _{CM}	160	А
Diode Forward Current (Note 1) @ T _C = 25°C @ T _C = 100°C	١ _F	46 40	A
Pulsed Diode Maximum Forward Current	I _{FM}	160	А
Non–Repetitive Forward Surge Current (Half–Sine Pulse, tp = 8.3 ms , T _C = 25° C) (Half–Sine Pulse, tp = 8.3 ms , T _C = 150° C)	I _{FM}	170 150	A
Short Circuit Withstand Time V_{GE} = 15 V, V_{CC} = 400 V, T_{C} = 150°C	t _{SC}	5	μs
Maximum Power Dissipation @ $T_C = 25^{\circ}C$ @ $T_C = 100^{\circ}C$	P _D	288 144	W
Operating Junction/Storage Temperature Range	T _J , T _{STG}	–55 to +175	°C
Maximum Lead Temp. for Soldering Purposes, 1/8" from case for 5 seconds	ΤL	265	°C


Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.


1. Value limited by bond wire.

2. $V_{CC} = 600 \text{ V}, V_{GE} = 15 \text{ V}, I_C = 120 \text{ A}, R_G = 67 \Omega$, Inductive Load, 100% Tested.

3. Repetitive Rating: pulse width limited by max. Junction temperature.


40 A, 650 V, V_{CE(Sat)} = 1.6 V (Typ.)

CASE 340CX

MARKING DIAGRAM

ORDERING INFORMATION

Device	Package	Shipping
AFGHL40T65RQDN	TO-247-3L	30 Units / Rail
	(Pb-Free)	

THERMAL CHARACTERISTICS

Rating	Symbol	Min	Тур	Max	Unit
Thermal Resistance Junction-to-Case, for IGBT	$R_{ ext{ heta}JC}$	-	0.40	0.52	°C/W
Thermal Resistance Junction-to-Case, for Diode	$R_{ ext{ heta}JC}$	-	0.86	1.12	
Thermal Resistance Junction-to-Ambient	$R_{\theta JA}$	-	-	40	

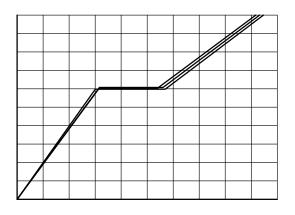
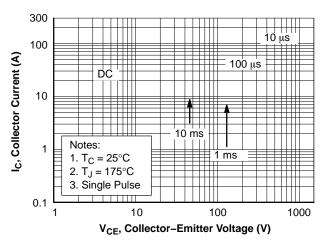
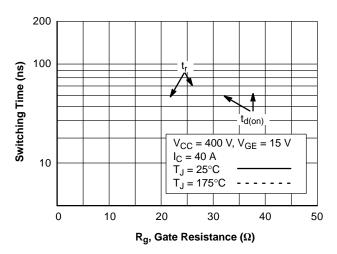
ELECTRICAL CHARACTERISTICS (T_J = $25^{\circ}C$ unless otherwise noted)

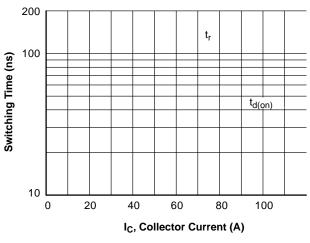
Parameter	Test Conditions	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS						-
Collector-emitter Breakdown Voltage, Gate-emitter Short-circuited	$V_{GE} = 0 V$, $I_C = 1 mA$	BV _{CES}	650	-	_	V
Temperature Coefficient of Breakdown Voltage	V _{GE} = 0 V, I _C = 1 mA	$\frac{\Delta \text{BV}_{\text{CES}}}{\Delta \text{T}_{\text{J}}}$	_	0.50	-	V/°C
Collector-emitter Cut-off Current, Gate-emitter Short-circuited	V_{GE} = 0 V, V_{CE} = V_{CES}	I _{CES}	_	-	30	μΑ
Gate Leakage Current, Collector-emitter Short-circuited	$V_{GE} = V_{GES}, V_{CE} = 0 V$	I _{GES}	_	-	±400	nA
ON CHARACTERISTICS						
Gate-emitter Threshold Voltage	$V_{GE} = V_{CE}, I_C = 40 \text{ mA}$	V _{GE(th)}	3.75	4.90	6.05	V
Collector-emitter Saturation Voltage	V_{GE} = 15 V, I _C = 40 A, T _J = 25°C V _{GE} = 15 V, I _C = 40 A, T _J = 175°C	V _{CE(sat)}		1.6 1.96	1.82 -	V
DYNAMIC CHARACTERISTICS						
Input Capacitance	V_{CE} = 30 V, V_{GE} = 0 V, f = 1 MHz	C _{ies}	-	2053	-	pF
Output Capacitance		C _{oes}	-	73	-	1
Reverse Transfer Capacitance		C _{res}	-	9	-	1
Gate Resistance	f = 1 MHz	Rg	-	16.5	-	Ω
Gate Charge Total	V _{CC} = 400 V, I _C = 40 A, V		•	•	•	•

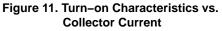
ELECTRICAL CHARACTERISTICS (T_J = 25° C unless otherwise noted) (Continued)

Parameter	Test Conditions	Symbol	Min	Тур	Max	Unit
SWITCHING CHARACTERISTICS, IN	DUCTIVE LOAD					
Turn-on Delay Time	$T_J = 175^{\circ}C, V_{CC} = 400 V,$ $I_C = 20 A, R_G = 2.5 \Omega,$ $V_{GE} = 15 V, Inductive Load$	t _{d(on)}	-	24	-	ns
Rise Time		tr	-	28	-	
Turn-off Delay Time		t _{d(off)}	-	112	-	
Fall Time		t _f	-	184	-	
Turn-on Switching Loss		E _{on}	-	0.74	-	mJ
Turn-off Switching Loss	1	E _{off}	-	0.93	-	
Total Switching Loss		E _{ts}	-	1.67	-	
Turn-on Delay Time	$T_{J} = 175^{\circ}C, V_{CC} = 400 V,$	t _{d(on)}	-	26	-	ns
Rise Time	$I_C = 40 \text{ A}, R_G = 2.5 \Omega,$ $V_{GE} = 15 \text{ V}, \text{ Inductive Load}$	t _r	-	54	-	
Turn-off Delay Time		t _{d(off)}	-	90	-	
Fall Time		t _f	-	138	-	1
Turn-on Switching Loss		E _{on}	-	1.62	-	mJ
Turn-off Switching Loss		E _{off}	-	1.40	-	
Total Switching Loss		E _{ts}	-	3.02	-	
DIODE CHARACTERISTICS						
Diode Forward Voltage	I _F = 40 A, T _J = 25°C	V _F	-	1.72	2.20	V
	I _F = 40 A, T _J = 175°C		_	1.77	-	1
DIODE SWITCHING CHARACTERIST	ICS, INDUCTIVE LOAD					
Reverse Recovery Energy	$I_F = 40 \text{ A}, dI_F/dt = 1000 \text{ A}/\mu\text{s}$	E _{rec}	-	54	-	μJ
Diode Reverse Recovery Time	V _R = 400 V, T _J = 25°C	T _{rr}	-	44	-	nS
Diode Reverse Recovery Charge		Q _{rr}	-	416	-	nC
Reverse Recovery Energy	$I_F = 40 \text{ A}, dI_F/dt = 1000 \text{ A}/\mu \text{s}$	E _{rec}	-	224	-	μJ
Diode Reverse Recovery Time	V _R = 400 V, T _J = 175°C	T _{rr}	-	89	-	nS
Diode Reverse Recovery Charge	1	Q _{rr}	_	1125	-	nC

TYPICAL CHARACTERISTICS (Continued)


Figure 7. Gate Charge Characteristics



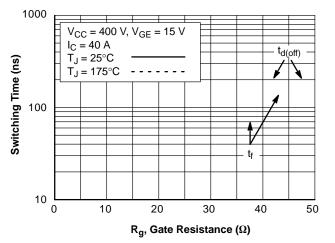


Figure 10. Turn–off Characteristics vs. Gate Resistance

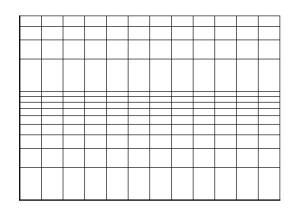
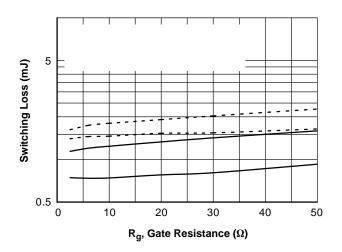



Figure 12. Turn-off Characteristics vs. Collector Current

TYPICAL CHARACTERISTICS (Continued)

TYPICAL CHARACTERISTICS (Continued)

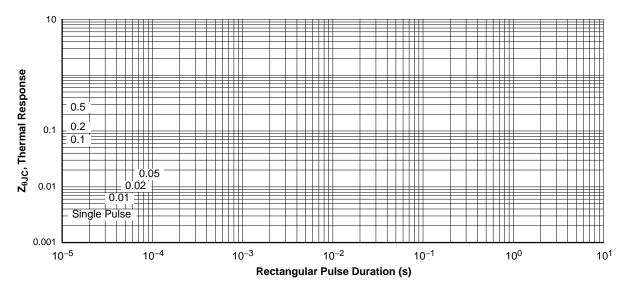


Figure 19. Transient Thermal Impedance of IGBT

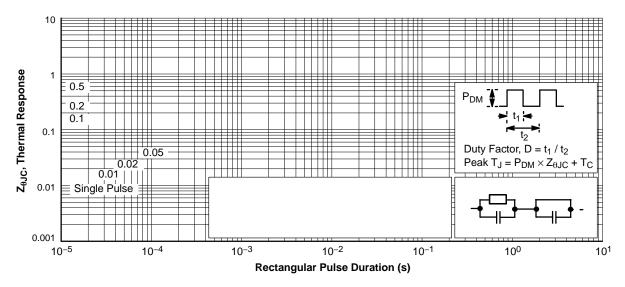
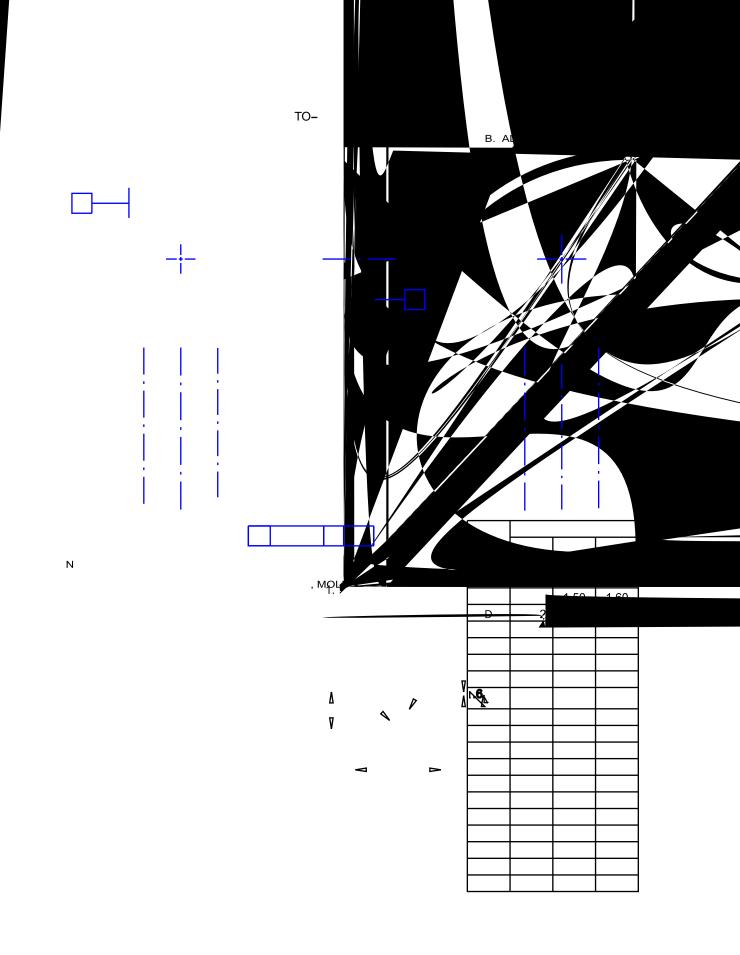



Figure 20. Transient Thermal Impedance of Diode

onsemi, , and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or incruit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi