

Field Stop Trench IGBT

650 V, 75 A

AFGHL75T65SQD

Using the novel field stop 4th generation high speed IGBT technology. AFGHL75T65SQD which is AEC Q101 qualified offers the optimum performance for both hard and soft switching topology in automotive application.

Features

- AEC-Q101 Qualified
- Maximum Junction Temperature: $T_J = 175$ °C
- Positive Temperature Co-efficient for Easy Parallel Operating
- High Current Capability
- Low Saturation Voltage: $V_{CE(Sat)} = 1.6 \text{ V (Typ.)} @ I_C = 75 \text{ A}$
- 100% of the Parts are Tested for I_{LM} (Note 2)
- Fast Switching
- Tight Parameter Distribution
- RoHS Compliant

Typical Applications

- Automotive HEV–EV Onboard Chargers
- Automotive HEV-EV DC-DC Converters
- Totem Pole Bridgeless PFC

MAXIMUM RATINGS

Rating Symbol Value	Rating
---------------------	--------

THERMAL CHARACTERISTICS

Rating	Symbol	Value	Unit
Thermal resistance junction-to-case, for IGBT	$R_{ hetaJC}$	0.4	°C/W
Thermal resistance junction-to-case, for Diode	$R_{ heta JC}$	0.65	°C/W
Thermal resistance junction-to-ambient	$R_{ hetaJA}$	40	°C/W

ELECTRICAL CHARACTERISTICS (T_{.J} = 25°C unless otherwise noted)

Parameter	Test Conditions	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS		•	•			
Collector–emitter breakdown voltage, gate–emitter short–circuited	$V_{GE} = 0 \text{ V},$ $I_C = 1 \text{ mA}$	BV _{CES}	650	_	_	V
Temperature Coefficient of Breakdown Voltage	V _{GE} = 0 V, I _C = 1 mA	$\frac{\Delta BV_{CES}}{\Delta T_{J}}$	-	0.6	-	V/°C
Collector–emitter cut–off current, gate–emitter short–circuited	V _{GE} = 0 V, V _{CE} = 650 V	I _{CES}	_	-	250	μΑ
Gate leakage current, collector–emitter short–circuited	V _{GE} = 20 V, V _{CE} = 0 V	I _{GES}	-	-	±400	nA
ON CHARACTERISTICS						
Gate-emitter threshold voltage	$V_{GE} = V_{CE}$, $I_C = 75 \text{ mA}$	V _{GE(th)}	3.4	4.9	6.4	V
Collector-emitter saturation voltage	V _{GE} = 15 V, I _C = 75 A V _{GE} = 15 V, I _C = 75 A, T _J = 175°C	V _{CE(sat)}	- -	1.6 1.95	2.1 -	V
DYNAMIC CHARACTERISTICS					•	
Input capacitance	V _{CE} = 30 V,	C _{ies}	_	4617	_	pF
Output capacitance	$V_{GE} = 0 \text{ V},$ $f = 1 \text{ MHz}$	C _{oes}	_	152	_	1
Reverse transfer capacitance		C _{res}	_	13	_	
Gate charge total	V _{CE} = 400 V,	Qg	_	136	_	nC
Gate-to-emitter charge	I _C = 75 A, V _{GE} = 15 V	Q _{ge}	_	25	_	
Gate-to-collector charge		Q_{gc}	_	32	-	1
SWITCHING CHARACTERISTICS, INDUC	TIVE LOAD					
Turn-on delay time	$T_{\rm C} = 25^{\circ}{\rm C},$	t _{d(on)}	_	23	_	ns
Rise time	$V_{CC} = 400 \text{ V},$ $I_{C} = 37.5 \text{ A},$	t _r	_	17	-	1
Turn-off delay time	$R_G = 4.7 \Omega$, $V_{GE} = 15 V$,	t _{d(off)}	_	112	-	1
Fall time	Inductive Load	t _f	_	8	-	1
Turn-on switching loss		E _{on}	_	0.61	-	mJ
Turn-off switching loss	- -	E _{off}	_	0.21	_	1
Total switching loss		E _{ts}	_	0.82	_	1
Turn-on delay time	T _C = 25°C,	t _{d(on)}	_	25	_	ns
Rise time	$V_{CC} = 400 \text{ V},$ $I_{C} = 75 \text{ A},$ $R_{G} = 4.7 \Omega,$ $V_{GE} = 15 \text{ V},$ Inductive Load	t _r	_	46	-	1
Turn-off delay time		t _{d(off)}	_	106	-	1
Fall time		t _f	_	67	-	1
Turn-on switching loss		E _{on}	_	1.86	-	mJ
Turn-off switching loss		E _{off}	_	1.13	-	1
Total switching loss		E _{ts}	_	2.99	-	1

LECTRICAL CHARACTERISTICS (T	

TYPICAL CHARACTERISTICS (CONTINUED)

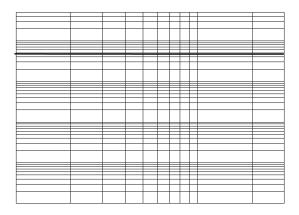
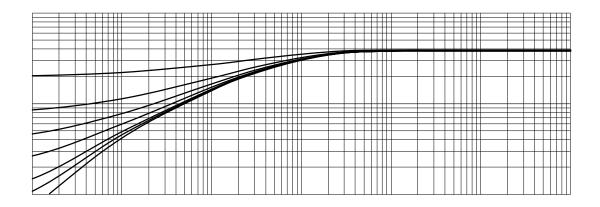
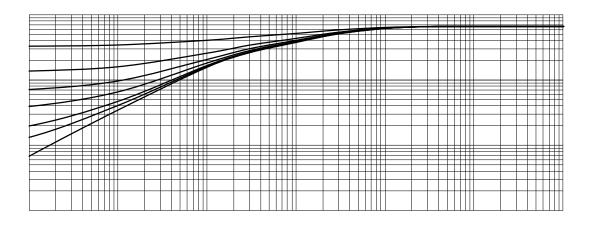


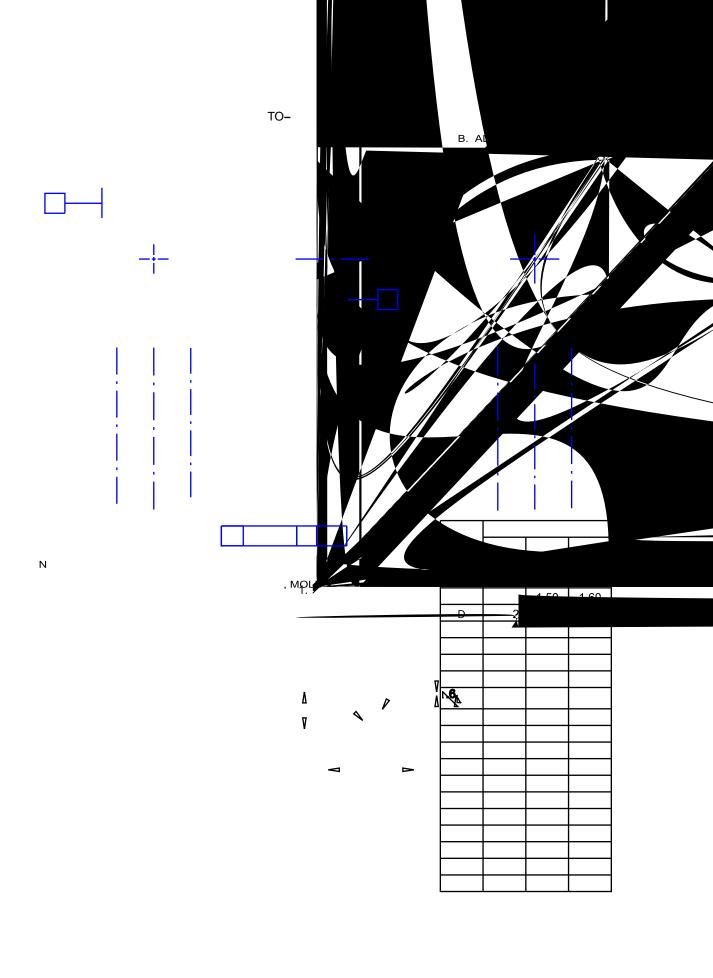
Figure 7. Capacitance Characteristics

Figure 8. Gate Charge Characteristics

Figure 9. Turn-On Characteristics vs. Gate Resistance


Figure 10. Turn-Off Characteristics vs. Gate Resistance


Figure 11. Turn-On Characteristics vs. Collector Current


Figure 12. Turn-Off Characteristics vs. Collector Current

TYPICAL CHARACTERISTICS (CONTINUED)

Figure 19. Stored Charge

