THERMAL CHARACTERISTICS

Rating	Symbol	Max	Unit
Thermal resistance junction-to-case, for IGBT	$R_{ extsf{ heta}JC}$	0.4	°C/W
Thermal resistance junction-to-case, for Diode	$R_{ extsf{ heta}JC}$	1.55	°C/W
Thermal resistance junction-to-ambient	$R_{ hetaJA}$	40	°C/W

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted)

Parameter	Test Conditions	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS		-				
Collector–emitter breakdown voltage, gate–emitter short–circuited	$V_{GE} = 0 V,$ $I_C = 1 mA$	BV _{CES}	650	_	_	V
Temperature Coefficient of Breakdown Voltage	$V_{GE} = 0 V,$ $I_C = 1 mA$	$\frac{\Delta BV_{CES}}{\Delta T_{J}}$	-	0.6	-	V/°C
Collector–emitter cut–off current, gate–emitter short–circuited	V _{GE} = 0 V, V _{CE} = 650 V	I _{CES}	-	-	250	μΑ
Gate leakage current, collector-emitter short-circuited	V _{GE} = 20 V, V _{CE} = 0 V	I _{GES}	-	-	±400	nA
ON CHARACTERISTICS						

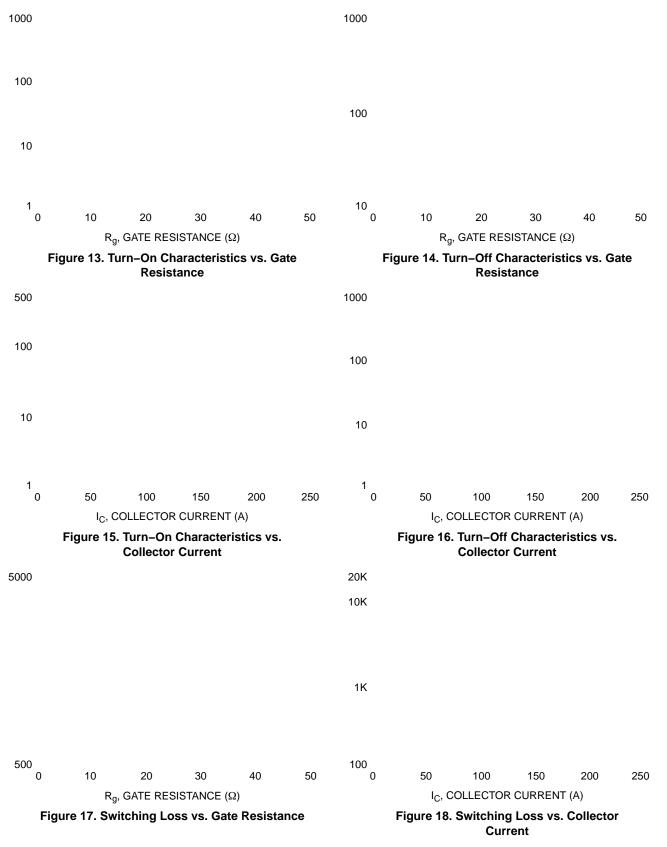
Gate-emitter threshold voltage	$V_{GE} = V_{CE}$, $I_C = 75$ mA	V _{GE(th)}	3.4	4.9	6.4	V
Collector-emitter saturation voltage	$V_{GE} = 15 \text{ V}, \text{ I}_{C} = 75 \text{ A}$	V _{CE(sat)}	-	1.6	2.1	V
	V _{GE} = 15 V, I _C = 75 A, T _J = 175°C		-	2.0	-	

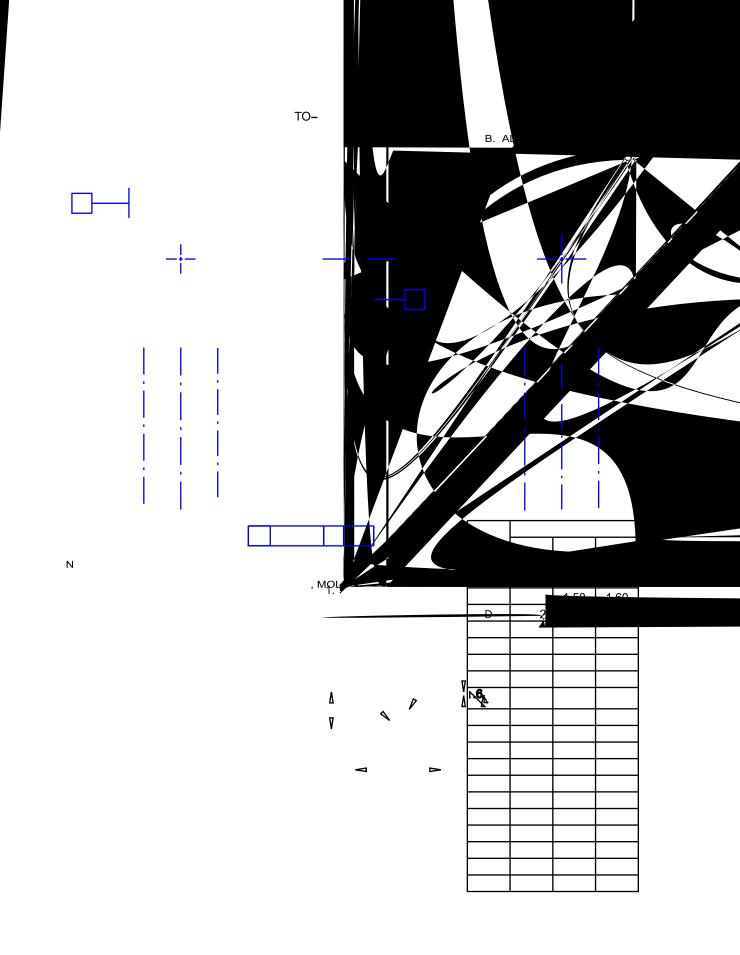
DYNAMIC CHARACTERISTICS

Input capacitance

 $V_{CE} = 30 \text{ V},$ $V_{GE} = 0 \text{ V},$ f = 1 MHz

C 0 6.5 38 6.5tf8efBT8 0 0 or


ELECTRICAL CHARACTERISTICS (T_J = 25° C unless otherwise noted)


Parameter Test Conditions Symbol Min	Тур	Max	Unit
--------------------------------------	-----	-----	------

TYPICAL CHARACTERISTICS

Figure 7. Saturation Voltage vs. Case

TYPICAL CHARACTERISTICS

onsemi, , and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or incruit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi