
LIN Transceiver

General Description

The single–wire transceiver AMIS–30600 is a monolithic integrated circuit in a SOIC–8 package. It works as an interface between the protocol controller and the physical bus.

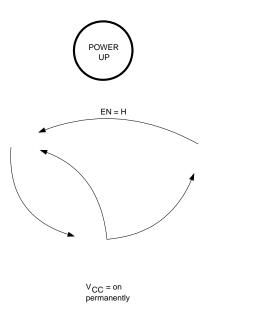

The AMIS–30600 is especially suitable to drive the bus line in LIN systems in automotive and industrial applications. Further it can be used in standard ISO9141 systems.

Table 1. PIN LIST AND DESCRIPTIONS

Pin	Name	Description				
1	RxD	Receive data output; low in dominant state				
2	EN	Enable input; transceiver in normal operation mode when high				
3	VCC	5V supply input				
4	TxD	Transmit data input; low in dominant state; internal 40 k Ω				

APPLICATION INFORMATION

Table 4. DC CHARACTERISTICS $V_{CC} = 4.75$ V to 5.25 V; $V_{BB} = 7.3$ V to 18 V, $V_{EN} < V_{ENon}$, $T_A = -40^{\circ}$ C to +125°C; $R_L = 500 \Omega$ unless specified otherwise. All voltages with respect to ground, positive current flowing into pin, unless otherwise specified.

	Symbol	Parameter	Conditions	Min	Тур	Max	Unit	
--	--------	-----------	------------	-----	-----	-----	------	--

SUPPLY (Pin V_{CC} and Pin V_{BB})

Table 5. AC ELECTRICAL CHARACTERISTICS ACCORDING TO LIN V13 $V_{CC} = 4.75$ V to 5.25 V; $V_{BB} = 7.3$ V to 18 V, $V_{EN} < V_{ENon}$, $T_A = -40^{\circ}$ C to +125°C; $R_L = 500 \Omega$ unless otherwise specified. Load for slope definitions (typical loads) = [L1] 1 nF 1 k Ω / [L2] 6.8 nF 600 Ω / [L3] 10 nF 500 Ω .

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
t_slope_F	Slope Time Falling Edge; (Note 5)	See Figure 5	4	-	24	μs
t_slope_R	Slope Time Rising Edge; (Note 5)	See Figure 5	4	-	24	μs
t_slope_Sym	Slope Time Symmetry; (Note 5)	t_slope_F - t_slope_R	-8	-	+8	μs
T_rec_F	Propagation Delay Bus Dominant to RxD = Low; (Note 6)	See Figures 4 and 5		2	6	μs
T_rec_R	Propagation Delay Bus Recessive to RxD = High; (Note 6)	See Figures 4 and 5		6	6	μs
t _{WAKE}	Wake-up Delay Time		30	100	200	μs

5. Guaranteed by design; not measured for all supply/load combinations on ATE.

6. Not measured on ATE.

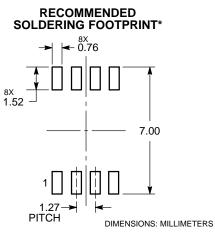
Table 6. AC ELECTRICAL CHARACTERISTICS ACCORDING TO LIN v2.0 V_{CC} = 4.75 V to 5.25 V; V_{BB} = 7.3 V to

18 V,V_{EN} < V_{ENon}, T_A = -40°C to +125°C; R_L = 500 Ω unless otherwise specified. Load for slope definitions (typical loads) = [L1] 1 nF 1 k Ω / [L2] 6.8 nF 600 Ω / [L3] 10 nF 500 Ω .

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
DYNAMIC RECEIVER CHARACTERISTICS ACCORDING TO LIN v2.0						
trx_pdr	Propagation Delay Bus Dominant to RxD = Low; (Note 7)	See Figure 6			6	μs
trx_pdf	Propagation Delay Bus Recessive to RxD = High; (Note 7)	See Figure 6			6	μs
trx_sym	Symmetry of Receiver Propagation Delay	trx_pdr – trx_pdf	-2	_	+2	μs

DYNAMIC TRANSMITTER CHARACTERISTICS ACCORDING TO LIN v2.0

D1	Duty Cycle 1 = t _{Bus_rec(min)} /(2 x t _{Bit}); See Figure	0.396	0.5	
D1	Duty Cycle 1 = t _{Bus_rec(min)} /(2 x t _{Bit} See Fig6ure			


DEVICE ORDERING INFORMATION

Part Number	Temperature Range	Package Type	Shipping [†]
AMIS30600LINI1G	−40°C − 125°C	SOIC-8 (Pb-Free)	96 Tube / Tray
AMIS30600LINI1RG	−40°C − 125°C	SOIC-8 (Pb-Free)	-

SOIC 8 CASE 751AZ ISSUE B

DATE 18 MAY 2015

*For additional information on our Pb Free strategy and soldering details, please download the **onsemi** Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

onsemi, , and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or incruit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi