Micro-Stepping Motor Driver

Introduction

The AMIS 30512 is a micro stepping stepper motor driver for bipolar stepper motors. The chip is connected through I/O pins and a SPI interface with an external microcontroller. It has an on chip voltage regulator, reset output and watchdog reset, able to supply peripheral devices. The AMIS 30512 contains a current translation table and takes the next micro step depending on the clock signal on the "NXT" input pin and the status of the "DIR" (=direction) register or input pin. The chip provides a so called "speed and load angle" output. This allows the creation of stall detection algorithms and control loops based on load angle to adjust torque and speed. It is using a proprietary PWM algorithm for reliable current control.

The AMIS 30512 is implemented in I2T100 technology, enabling both high voltage analog circuitry and digital functionality on the same chip. The chip is fully compatible with the automotive voltage requirements.

The AMIS 30512 is ideally suited for general purpose stepper motor applications in the automotive, industrial, medical, and marine environment.

Key Features

- Dual H Bridge for 2 phase Stepper Motors
- Programmable Peak current up to 800 mA Using a 5 bit Current DAC
- On chip Current Translator
- SPI Interface
- Speed and Load Angle Output
- Seven Step Modes from Full step up to 32 Micro steps
- Fully Integrated Current sense
- PWM Current Control with Automatic Selection of Fast and Slow Decay
- Low EMC PWM with Selectable Voltage Slopes
- Active Fly back Diodes
- Full Output Protection and Diagnosis
- •

Table of Contents

Page
Introduction 1
Key Features 1
Ordering Information 1
Block Diagram 2
Pin List and Descriptions 3
Electrical Specifications 3
Typical Application Schematic 9
Functional Description 10
SPI Interface 21
Soldering Information 29
Package Outline 30

Name	Pin	Description			
DO	1	SPI data output (open drain)			
VDD	2	Logic Supply Input (needs external decoupling capacitor)			
GND	3	Ground			
DI	4	SPI data in			
CLK	5	SPI clock input			
NXT	6	Next micro-step input			
DIR	7	Direction input			
ERR	8	Error Output (open drain)			
SLA	9	Speed Load Angle Output			
CPN	CPN 10 Negative connection of charge pump capacitor				
CPP	11	Positive connection of charge pump capacitor			
VCP	12	Charge-pump filter-capacitor			
CLR	13	"Clear" = Chip Reset input			
CS	14	SPI chip select input			
VBB	15	High Voltage Supply Input			
MOTYP	16	Negative end of phase Y coil output			
GND	17	Ground			
MOTYN	18	Positive end of phase Y coil output			
MOTXN	19	Positive end of phase X coil output			
GND	20	Ground			
MOTXP	21	Negative end of phase X coil output			
VBB	22	High Voltage Supply Input			
POR/WD 23 Power-on-reset (POR) and watchdog reset output (open drain)					

Table 1. Pin List and Descriptions

Table 4. DC Parameters (The DC parameters are given for V_{BB}

Table 4. DC Parameters (The DC parameters are given for V_{BB}

Table 5. AC Parameters (The AC parameters are given for V_{BB} and temperature in their operating ranges.)

Symbol	Pin(s)	Parameter	Remark/Test Conditions	Min.	Тур.	Max.	Unit
DIGITAL C	UTPUTS	·					•
t _{H2L}	DO ERRB	Output fall-time from V_{inH} to V_{inL}	Capacitive load 50 pF			50	ns
CHARGE	PUMP	•		-			
f _{CP}	CPN CPP	Charge pump frequency			250		kHz
t _{CPU}	MOTxx	Start-up time of charge pump	For typ. value C_{buffer} and C_{pump}			2	ms
CLR FUNC	CTION						
t _{CLR}	CLR	Hard reset duration time		20		90	μs
NXT FUNC	CTION						
t _{NXT_HI}	NXT	NXT minimum, high pulse width	See Figure 2	2			μs
t _{NXT_LO}		NXT minimum, low pulse width	See Figure 2	2			μs
t _{DIR_SET}	1	NXT hold time, following change of DIR	See Figure 2	0.5			μs
t _{DIR HOLD}	1	NXT hold time, before change of DIR	See Figure 2	0.5			ſ

Table 6. SPI Timing Parameters

Symbol	Parameter	Min.	Тур.	Max.	Unit
t _{CLK}	SPI clock period	1			μs
t _{CLK_HIGH}	SPI clock high time	100			ns
t _{CLK_LOW}	SPI clock low time	100			ns
t _{SET_DI}	DI set up time, valid data before rising edge of CLK	50			ns
t _{HOLD_DI}	DI hold time, hold data after rising edge of CLK	50			ns
^t CSB_HIGH	CSB high time	2.5			μs
t _{SET_CSB}	CSB set up time, CSB low before rising edge of CLK	100			ns
t _{SET_CLK}	CLK set up time, CLK low before rising edge of CSB	100			ns

Figure 5. SPI Timing

Figure 6. Typical Application Schematic

Figure 8. Automatic Duty Cycle Adaptation

Table 9. Circular Translator Table

Stepmode (SM[2:0]) % of Imax

MSP[6:0]

Coil x Coil y

Figure 9. Translator Table: Circular and Square

Speed and Load Angle Output The SLA pin provides an output voltage that indicates the level of the Back

Figure 13. Timing Diagram of SLA-pin

not properly connected to guarantee sufficient low Rdson of the drivers, then the bit <CPFAIL> is set in Table 27: SPI Status Register 0. Also after power on reset the charge pump voltage will need the time t_{CPU} to exceed the required threshold. During that time <CPFAIL> will be set to "1".

Error Output

This is a digital output to flag a problem to the external microcontroller. The signal on this output is active low and the logic combination of:

NOT(ERRB) = <TW> OR <TSD> OR <OVCXij> OR <OVCYij> OR <OPENi> OR <CPFAIL>

Logic Supply Regulator

AMIS-30512 has an on-chip 5 V low-drop regulator with external decoupling capacitor to supply the digital part of the

chip, some low-voltage analog blocks and external circuitry.

The voltage is derived from an internal bandgap reference.

To calculate the available drive-current for external

circuitry, the specified $I_{load.\,14mo5.95341\,\,47.792\,\,2.81\,\,T9.81\,\,Tlon\,\,5.953491.\,d1\,i\,q}$

AMIS-30512

SPI Interface

The serial peripheral interface (SPI) allows an external microcontroller (Master) to communicate with AMIS 30512. The implemented SPI block is designed to interface directly with numerous micro controllers from several manufacturers. AMIS 30512 acts always as a Slave and can't initiate any transmission. The operation of the device is configured and controlled by means of SPI registers which are observable for read and/or write from the Master.

SPI Transfer Format and Pin Signals

During a SPI transfer, data is simultaneously transmitted (shifted out serially) and received (shifted in serially). A serial clock line (CLK) synchronizes shifting and sampling of the information on the two serial data lines (DO and DI). DO signal is the output from the Slave (AMIS 30512), and DI signal is the output from the Master. A chip select line (CSB) allows individual selection of a Slave SPI device in a multiple slave system. The CSB line is active low. If AMIS 30512 is not selected, DO is pulled up with the external pull up resistor. Since AMIS 30512 operates as a Slave in MODE 0 (CPOL = 0; CPHA = 0) it always clocks data out on the falling edge and samples data in on rising edge of clock. The Master SPI port must be configured in MODE 0 too, to match this operation. The SPI clock idles low between the transferred bytes.

The diagram below is both a Master and a Slave timing diagram since CLK, DO and DI pins are directly connected between the Master and the Slave.

Figure 16. Timing Diagram of a SPI Transfer

Byte 1 contains the Command and the SPI Register Address and indicates to AMIS 30512 the chosen type of operation and addressed register. Byte 2 contains data, or sent from the Master in a WRITE operation, or received from AMIS

Figure 19. Single WRITE Operation where DATA from the Master is Written in SPI Register with Address 3

SPI Control Registers

All SPI control registers have Read/Write access and default to "0" after power on or hard reset.

	Control Register (WR)								
	Structure								
Address	Content	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
00h	Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
	Reset	0	0	0	0	0	0	0	0
	Data	WDEN	WDT[3:0]				-	-	-
Where:	/here:								

Table 12. SPI Control Register WR

R/W	Read and Write access
Reset:	Status after power-On or hard reset
WDEN:	Watchdog enable. Writing "1" to this bit will activate the watchdog timer (if not enabled yet) or will clear
	this timer (if already enabled). Writing "0" to this bit will clear WD bit (SPI Status Register 0).
WDT[3:0]:	Watchdog timeout interval

Table 13. SPI Control Register 0

Control Register 0 (CR0)									
			Structure						
Address	Content	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
01h	Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
	Reset	0	0	0	0	0	0	0	0
	Data	SM[2:0]			CUR[4:0]				

Where:

R/W	Read and Write access
Reset:	Status after power On or hard reset
SM[2:0]:	Step mode
CUR[4:0]:	Current amplitude

Table 14. SPI Control Register 1

	Control Register 1 (CR1)								
			Structure						
Address	Content	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
02h	Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
	Reset	0	0	0	0	0	0	0	0
	Data	DIRCTRL	NXTP	-	-	PWMF	PWMJ	EMC	[1:0]

Where:

R/W	Read and Write access
Reset:	Status after power on or hard reset
DIRCTRL	Direction control
NXTP	NEXT polarity
PWMF	PWM frequency
PWMJ	PWM jitter
EMC[1:0]	EMC slope control

Table 15. SPI Control Register 2

Control Register 2 (CR2)

Address Content

eter Overview CUR[4:0]

		Current (mA)	Index	CUR[4:0]			Current (mA)		
1	0	15	10	1	0	0	0	0	181
1	1	30	11	1	0	0	0	1	200
	0	45	12	1	0	0	1	0	221
	1	50	13	1	0	0	1	1	244
1	0	55	14	1	0	1	0	0	269
1	1	61	15	1	0	1	0	1	297
	0	67	16	1	0	1	1	0	328
	1	74	17	1	0	1	1	1	362
1	0	82	18	1	1	0	0	0	400
1	1	91	19	1	1	0	0	1	441
	0	100	1A	1	1	0	1	0	487
	1	110	1B	1	1	0	1	1	538
1	0	122	1C	1	1	1	0	0	594
	1	135	1D	1	1	1	0	1	656
	0	149	1E	1	1	1	1	0	724
	1	164	1F	1	1	1	1	1	800

IV/dt of the PWM voltage slopes on the motor pins.

eter Overview EMC[1:0]

Slope (V/μs)	Remark
150	Turn-on and turn-off voltage slope 10% to 90%
100	19

SPI Status Register Description

All four SPI status registers have Read Access and are default to "0" after power on or hard reset.

		Structure							
Address	Content	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
04h	Access	R	R	R	R	R	R	R	R
	Reset	0	0	0	0	0	0	0	0
	Data	PAR	TW	CPfail	-	OPENX	OPENY	-	-

Table 27. Status Register 0 (SR0)

Where:

R	Read only mode access
Reset	Status after power on or hard reset
PAR	Parity check
TW	Thermal warning
Cpfail	Charge pump failure
OPENX	Open Coil X detected
OPENY	Open Coil Y detected
Remark:	Data is not latched

Table 28. Status Register 1 (SR1)

		Structure							
Address	Content	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
	Access	R	R	R	R	R	R	R	R
05h	Reset	0	0	0	0	0			

Soldering

Introduction to Soldering Surface Mount Packages

This text gives a very brief insight to a complex technology. A more in-depth account of soldering ICs can be found in the AMIS "Data Handbook IC26; Integrated Circuit Packages" (document order number 9398 652 90011). There is no soldering method that is ideal for all surface mount IC packages. Wave soldering is not always suitable for surface mount ICs, or for printed-circuit boards (PCB) with high population densities. In these situations re-flow soldering is often used.

Re-flow Soldering

Re-flow soldering requires solder paste (a suspension of fine solder particles, flux and binding agent) to be applied to the PCB by screen printing, stencilling or pressure-syringe dispensing before package placement. Several methods exist for re-flowing; for example, infrared/convection heating in a conveyor type oven.

Throughput times (preheating, soldering and cooling) vary between 100 and 200 seconds depending on the heating method. Typical re-flow peak temperatures range from 215 to 260°C. The top-surface temperature of the packages should preferably be kept below 230°C.

Wave Soldering

Conventional single wave soldering is not recommended for surface mount devices (SMDs) or PCBs with a high component density, as solder bridging and non-wetting can SOIC 24

onsemi, , and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or incruit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi