BF256A is a Preferred Device

JFET - General Purpose

N–Channel

N–Channel Junction Field Effect Transistor designed for VHF and UHF applications.

- Low Cost TO–92 Type Package
- Forward Transfer Admittance, $Y_{fs} = 4.5$ mmhos (Min)
- Transfer Capacitance $-C_{rss} = 0.7$ (Typ)
- Power Gain at f = 800 MHz, Typ. = 11 dB

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Drain-Source Voltage	V _{DS}	30	Vdc
Drain–Gate Voltage	VDG	30	Vdc
Gate-Source Voltage	V _{GS}	30	Vdc
Forward Gate Current	I _{G(f)}	10	mAdc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	360 2.88	mW mW/°C
Operating and Storage Channel Temperature Range	T _{channel} , T _{stg}	-65 to +150	°C

TO-92 CASE 29 1 STYLE 5 2 3

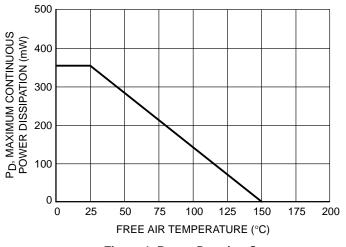
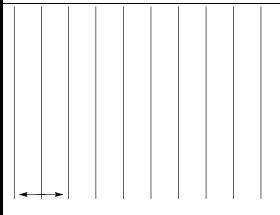


Figure 1. Power Derating Curve


Device	Package	Shipping	
BF256A	TO-92	5000 Units/Box	

CAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise noted)

	$(TA = 20^{\circ} 0^{\circ} \text{ arress outlet when holds)}$					
Character	ristic	Symbol	Min	Тур	Max	Unit
RACTERISTICS						
rce Breakdown Voltage	$(-I_{G} = -1.0 \ \mu \text{Adc}, \ V_{DS} = 0)$	^{-V} (BR)GSS	30	-		Vdc
ce Voltage	$(V_{DS} = 15 \text{ Vdc}, I_D = 200 \mu\text{A})$	-V _{GS}	0.5		7.5	Vdc
rse Current	$(-V_{GS} = 20 \text{ Vdc}, V_{DS} = 0)$	-IGSS			5.0	nAdc
ACTERISTICS						
-Voltage Drain Current (Note 1	1.) $(V_{DS} = 15 \text{ Vdc}, V_{GS} = 0)$	IDSS	3.0	-	7.0	mAdc
IGNAL CHARACTERISTIC	CS					
ansfer Admittance	$(V_{DS} = 15 \text{ Vdc}, V_{GS} = 0, f = 1 \text{ kHz})$	Y _{fs}	4.5	5.0	-	mmhos
Tansfer Capacitance $(V_{DS} = 20 \text{ Vdc}, -V_{GS} = 1 \text{ Vdc}, f = 1 \text{ MHz})$		C _{rss}	-	0.7	-	pF
pacitance	$(V_{DS} = 20 \text{ Vdc}, V_{GS} = 0, f = 1 \text{ MHz})$	C _{OSS}	-	1.0	-	pF
equency (Note 2.)	$(V_{DS} = 15 \text{ Vdc}, V_{GS} = 0)$	fgfs	-	1000	-	MHz

t: Pulse Width = $300 \ \mu$ s, Duty Cycle = 2.0%.

ency at which gfs is 0.7 of its value at 1 KHz.

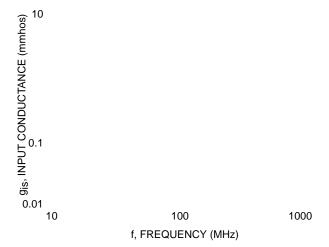
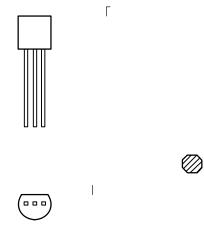



Figure 4. Input Admittance versus Frequency

PACKAGE DIMENSIONS

TO-92 (TO-226) CASE 29-11 ISSUE AL

- NOTES:
 DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 CONTROLLING DIMENSION: INCH.
 CONTOUR OF PACKAGE BEYOND DIMENSION R IS UNCONTROLLED.
 LEAD DIMENSION IS UNCONTROLLED IN P AND BEYOND DIMENSION K MINIMUM.

