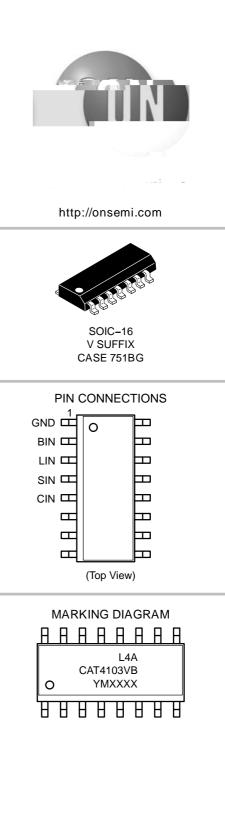
3-Channel Constant-Current RGB LED Driver

Description

The CAT4103 is a 3 channel, linear based constant current LED driver designed for RGB LED control, requiring no inductor and provides a low noise operation. LED channel currents up to 175 mA are programmed independently via separate external resistors. Low output voltage operation of 0.4 V at 175 mA allows for more power efficient designs across wider supply voltage range. The three LED pins are compatible with high voltage up to 25 V supporting applications with long strings of LEDs.

A high speed 4 wire 25 MHz serial interface controls each individual channel using a shift register and latch configuration. Output data pins allow multiple devices to be cascaded and programmed via one serial interface with no need for external drivers or timing considerations. The device also includes a blanking control pin (BIN) that can be used to disable all channels independently of the interface.

Thermal shutdown protection is incorporated in the device to disable the LED outputs whenever the die temperature exceeds 150° C.


The device is available in a 16 lead SOIC package.

Features

- 3 Independent Current Sinks Rated to 25 V
- LED Current to 175 mA per Channel Set by Separate External Resistors
- High speed 25 MHz 4 wire Serial Interface
- Buffered Output Drivers to Ensure Data Integrity
- Cascadable Devices
- Low Dropout Current Source (0.4 V at 175 mA)
- 3 V to 5.5 V Logic Supply
- Thermal Shutdown Protection
- 16 lead SOIC Package
- These Devices are Pb Free, Halogen Free/BFR Free and are RoHS Compliant

Applications

- Multi color, Intelligent LED, Architectural Lighting
- High visual Impact LED Signs and Displays
- LCD Backlight

ORDERING INFORMATION

Device	Package	Shipping
CAT4103V-GT2	SOIC-16	2,000/
(Note 1)	(Pb-Free)	Tape & Reel

1. Lead Finish NiPdAu

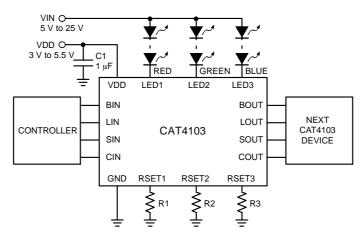


Figure 1. Typical Application Circuit

Table 1. ABSOLUTE MAXIMUM RATINGS

Parameter	Rating	Units
VDD Voltage	6	V
Input Voltage Range (SIN, BIN, CIN, LIN)	-0.3 V to VDD+0.3 V	V
Output voltage range (SOUT, BOUT, COUT, LOUT)	-0.3 V to VDD+0.3 V	V
LED1, LED2, LED3 Voltage	25	V
	-	-

DC Output Current on LED1 to LED3

Table 4. TIMING CHARACTERISTICS (Min and Max values are over recommended operating conditions unless specified	
otherwise. Typical values are at V _{IN} = 5.0 V, T _{AMB} = 25°C.)	

Symbol	Name	Conditions	Min	Тур	Max	Units
CIN	·	•				
f _{cin}	CIN Clock Frequency				25	MHz
t _{cwh}	CIN Pulse Width High		18			ns
t _{cwl}	CIN Pulse Width Low		18			ns
SIN						
t _{ssu}	Setup time SIN to CIN		4			ns
t _{sh}	Hold time SIN to CIN		4			ns
LIN			-			
T _{lwh}	LIN Pulse width		20			ns
t _{lchd}	Hold time LIN to CIN		4			ns
t _{lcsu}	Setup time LIN to CIN		8			ns
LEDn						
t _{ledplon}	Turn on Propagation delay LIN	LIN to LED(n) on		380		ns
t _{ledploff}	Turn off Propagation delay LIN	LIN to LED(n) off		130		ns

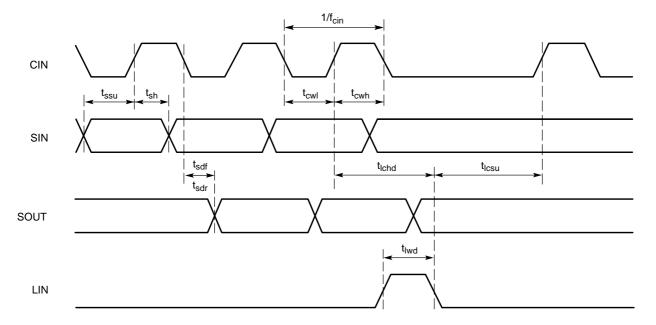


Figure 2. Timing Diagram A

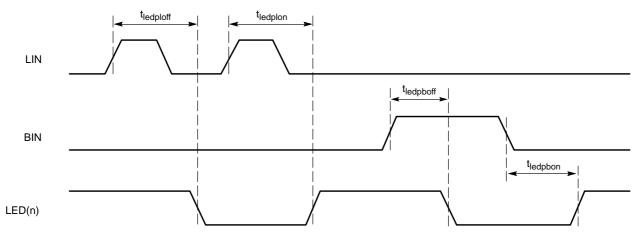
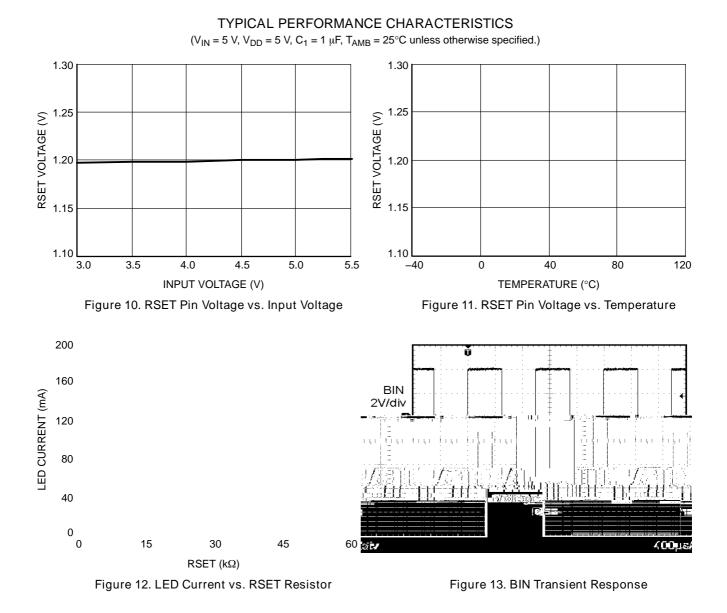



Figure 3. Timing Diagram B

Table 5. PIN DESCRIPTIONS

Name	Pin Number	Function	
GND	1	Ground Reference	
BIN	2	Blank input pin	
LIN	3	Latch Data input pin	
SIN	4	Serial Data input pin	
CIN	5	Serial Clock input pin	
RSET3	6	LED current set pin for LED3	
RSET2	7	LED current set pin for LED2	
RSET1	8	LED current set pin for LED1	
LED3	9	LED channel 3 cathode terminal	
LED2	10	LED channel 2 cathode terminal	
LED1	11	LED channel 1 cathode terminal	
COUT	12	Serial Clock output pin	
SOUT	13	Serial Data output pin	
LOUT	14	Latch Data output pin	
BOUT	15	Blank output pin	
VDD	16	Device Supply pin	

Pin Function

GND is the ground reference pin for the entire device. This pin must be connected to the ground plane on the PCB.

BIN is the blank input used to disable all channels. When low, all LED channels are enabled according to the output latch content. When high, all LED channels are turned off. This pin can be used to turn all the LEDs off while preserving the data in the output latches.

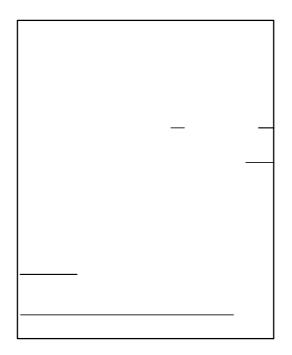
LIN is the latch data input. On the rising edge of LIN, data is loaded from the 3 bit serial shift register into the output register latch. On the falling edge of LIN the data is latched in the output register and isolated from the state of the serial shift register.

SIN is the serial data input. Data is loaded into the internal register on each rising edge of CIN.

CIN is the serial clock input. On each rising CIN edge, data is transferred from SIN to the internal 3 bit serial shift register.

RSET1 to RSET3 are the LED current set inputs. The current pulled out of these pins will be mirrored in the corresponding LED channel with a gain of 400.

LED1 to LED3 are the LED current sink inputs. These pins are connected to the bottom cathodes of the LED strings. The current sinks bias the LEDs with a current equal to 400 times the RSET pin current. For the LED sink to operate correctly, the voltage on the LED pin must be above 0.4 V. Each LED channel can withstand and operate with voltages up to 25 V.


COUT is a driven output of CIN and can be connected to the next device in the cascade.

SOUT is the output of the 3 bit serial shift register. Connect to SIN of the next device in the cascade. SOUT is clocked on the falling edge of CIN.

LOUT is a driven output of LIN and can be connected to the next chip in the cascade.

BOUT is a driven output of BIN and can be connected to the next chip in the cascade.

VDD is the positive supply pin voltage for the entire device. A small 1 μ F ceramic capacitor is recommended close to the pin.

Application Information

Cascading Multiple Devices

The CAT4103 is designed to be cascaded for driving multiple RGD LEDs. Figure 16 shows three CAT4103 drivers cascaded together. The programming data from the controller travels serially through each device. Figure 15 shows a programming example turning on the following LED channels: BLUE3, GREEN2 and RED1. The programming waveforms are measured from the controller to the inputs of the first CAT4103.

Figure 15. Programming Example

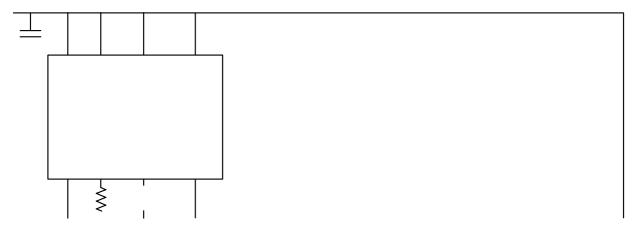
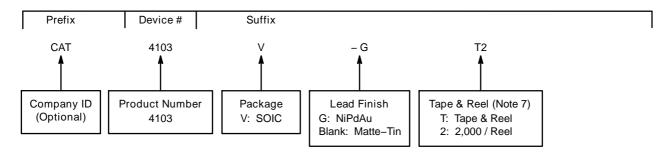


Figure 16. Three Cascaded CAT4103 Devices

Power Dissipation

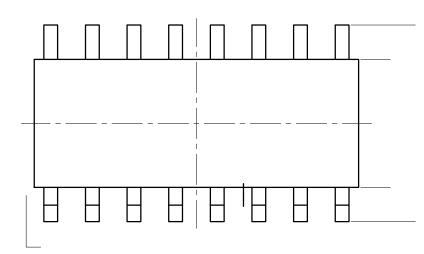

The power dissipation (P_D) of the CAT4103 can be calculated as follows:

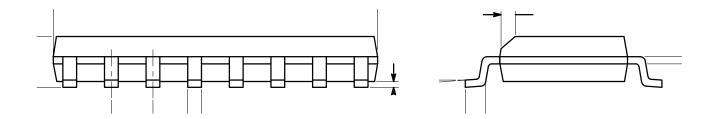
$$\mathsf{P}_\mathsf{D} = (\mathsf{V}_\mathsf{DD} \times \mathsf{I}_\mathsf{DD}) + \Sigma(\mathsf{V}_\mathsf{LEDN} \times \mathsf{I}_\mathsf{LEDN})$$

where V_{LEDN} is the voltage at the LED pin, and I_{LEDN} is the associated LED current. Combinations of high V_{LED} voltage or high ambient temperature can cause the CAT4103 to enter thermal shutdown. In applications where V_{LEDN} is high, a resistor can be inserted in series with the LED string to lower P_D .

Thermal dissipation of the junction heat consists primarily of two paths in series. The first path is the junction to the case (θ_{JC}) thermal resistance which is defined by the package style, and the second path is the case to ambient

Example of Ordering Information (Note 5)




- 3. All packages are RoHS-compliant (Lead-free, Halogen-free).
- 4. The standard plated finish is NiPdAu.
- 5. The device used in the above example is a CAT4103V-GT2 (SOIC, NiPdAu, Tape & Reel, 2,000/Reel).
- For additional temperature options, please contact your nearest ON Semiconductor Sales office.
 For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

SOIC-16, 150 mils CASE 751BG ISSUE O

DATE 19 DEC 2008

DOCUMENT NUMBER:	98AON34275E	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	SOIC-16, 150 mils		PAGE 1 OF 1	

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, , and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or incruit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi