onse i

Table 3. ELECTRICAL OPERATING CHARACTERISTICS (Min and Max values are over recommended operating conditions
unless specified otherwise. Typical values are at V_{DD} = 5.0 V, T_{AMB} = 25°C.)

Symbol	Name	Conditions	Min	Тур	Max	Units
DC CHARA	CTERISTICS				•	
I _{DD1}	Supply Current Outputs Off	V_{LED} = 5 V, R_{SET} = 24.9 k Ω		2	5	mA
I _{DD2}	Supply Current Outputs Off	V_{LED} = 5 V, R_{SET} = 5.23 k Ω		4	10	mA
I _{DD3}	Supply Current Outputs On	V_{LED} = 0.5 V, R_{SET} = 24.9 k Ω		2	5	mA
I _{DD4}	Supply Current Outputs On	V_{LED} = 0.5 V, R_{SET} = 5.23 k Ω		4	10	mA
I _{SHDN}	Shutdown Current	V _{OE} = 0 V			1	μA
I _{LKG}	LED Output Leakage	V_{LED} = 5 V, Outputs Off	–1		1	μA
R _{OE}	OE Pull-down Resistance		140	190	250	kΩ
V _{OE_IH} V _{OE_IL}	OE Logic High Level OE Logic Low Level		1.3		0.4	V
V _{PWM_IH} V _{PWM_IL}	PWMx Logic High Level PWMx Logic Low Level		0.7 x V _{DD}		0.3 x V _{DD}	V
Ι _{ΙL}	Logic Input Leakage Current (PWMx)	$V_{PWMx} = V_{DD}$ or GND	-5	0	5	μΑ
V _{RSETx}	RSETx Regulated Voltage		1.17	1.2	1.23	V
T _{SD}	Thermal Shutdown			150		°C
T _{HYS}	Thermal Hysteresis			20		°C
I _{LED} /I _{RSET}	RSET to LED Current Gain Ratio	100 mA LED Current		400		
V _{UVLO}	Undervoltage Lockout (UVLO) Threshold			1.8		V

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

Table 4. RECOMMENDED TIMING (Min and Max values are over recommended operating conditions unless specified otherwise. Typical values are at V_{DD} = 5.0 V, T_{AMB} = 25°C.)

Symbol	Name	Conditions	Min	Тур	Max	Units
t _{PS}	Turn–On time, OE rising to ILED from Shutdown	$I_{LED} = 100 \text{ mA}$		1.4		μs

TYPICAL PERFORMANCE CHARACTERISTICS

 $(V_{IN}$

Table 5. PIN DESCRIPTIONS

Name	Pin Number	Function
PGND	1	Power Ground.
GND	2	Ground Reference.
PWM3	3	PWM control input for LED3
		PWM control input for LED2

Application Information

Power Dissipation

The power dissipation (P_D) of the CAT4109/CAV4109 can be calculated as follows:

$$\mathbf{P}_{\mathrm{D}} = \left(\mathbf{V}_{\mathrm{DD}} \times \mathbf{I}_{\mathrm{DD}}\right) + \Sigma \left(\mathbf{V}_{\mathrm{LEDN}} \times \mathbf{I}_{\mathrm{LEDN}}\right)$$

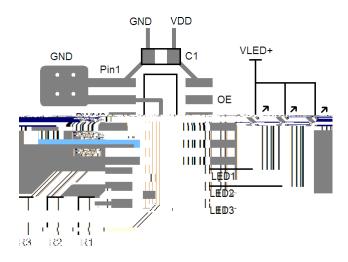
where V_{LEDN} is the voltage at the LED pin, and I_{LEDN} is the associated LED current. Combinations of high V_{LED} voltage or high ambient temperature can cause the CAT4109/CAV4109 to enter thermal shutdown. In applications where V_{LEDN} is high, a resistor can be inserted in series with the LED string to lower P_D .

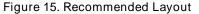
Thermal dissipation of the junction heat consists primarily of two paths in series. The first path is the junction to the case (θ_{JC}) thermal resistance which is defined by the package style, and the second path is the case to ambient (θ_{CA}) thermal resistance, which is dependent on board layout. The overall junction to ambient (θ_{JA}) thermal resistance is equal to:

$$\theta_{\mathsf{JA}} = \theta_{\mathsf{JC}} + \theta_{\mathsf{CA}}$$

For a given package style and board layout, the operating junction temperature T_J is a function of the power dissipation P_D , and the ambient temperature, resulting in the following equation:

$$\mathsf{T}_{\mathsf{J}} = \mathsf{T}_{\mathsf{AMB}} + \mathsf{P}_{\mathsf{D}} \left(\theta_{\mathsf{JC}} + \theta_{\mathsf{CA}} \right) = \mathsf{T}_{\mathsf{AMB}} + \mathsf{P}_{\mathsf{D}} \theta_{\mathsf{JA}}$$

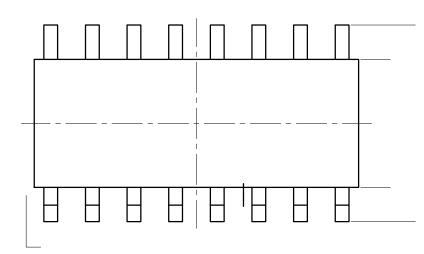

When mounted on a double–sided printed circuit board with two square inches of copper allocated for "heat spreading", the resulting θ_{JA} is about 74°C/W.

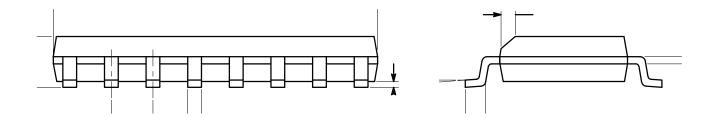

For example, at 60°C ambient temperature, the maximum power dissipation is calculated as follow:

$$P_{Dmax} = \frac{(T_{Jmax} - T_{AMB})}{\theta_{JA}} = \frac{(150 - 60)}{74} = 1.2 \text{ W}$$

Recommended Layout

Bypass capacitor C1 should be placed as close to the IC as possible. RSET resistors should be directly connected to the GND pin of the device. For better thermal dissipation, multiple via can be used to connect the GND pad to a large ground plane. It is also recommended to use large pads and traces on the PCB wherever possible to spread out the heat. The LEDs for this layout are driven from a separate supply (VLED+), but they can also be driven from the same supply connected to VDD.





SOIC-16, 150 mils CASE 751BG ISSUE O

DATE 19 DEC 2008

DOCUMENT NUMBER:	98AON34275E	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.			
DESCRIPTION:	SOIC-16, 150 mils		PAGE 1 OF 1		

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, , and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or incruit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi