

MARKING DIAGRAM

ELECTRICAL CONNECTION

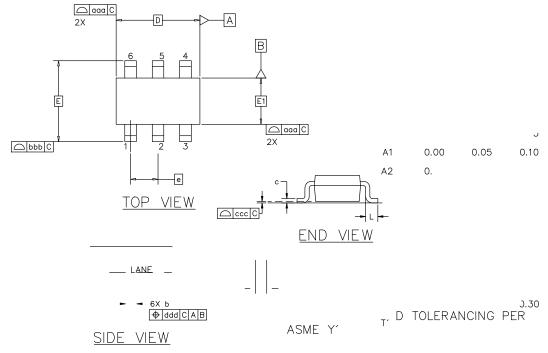
Device	Package	Shipping [†]
CPH6904-TL-E	CPH6 (Pb-Free)	3 000 /

				V
V_{GDS}	Gate-to-Drain Voltage		-25	V
I _G	Gate Current		10	mA
I _D	Drain Current		50	mA
P _D	Allowable Power Dissipation	1 unit	400	mW
P _T	Total Power Dissipation		700	mW
T _{ch}	Channel Temperature		150	°C
T _{stg}	Storage Temperature		-55 to +150	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

ELECTRICAL CHARACTERISTICS (at $T_A = 25^{\circ}C$)

Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit
V _{(BR)GDS}	Gate-to-Drain Breakdown Voltage	$I_G = -10 \mu A, V_{DS} = 0 V$	-25			V
I _{GSS}	Gate-to-Source Leakage Current	$V_{GS} = -10 \text{ V}, V_{DS} = 0 \text{ V}$			-1.0	nA
V _{GS} (off)	Cutoff Voltage	$V_{DS} = 5 \text{ V}, I_{D} = 100 \mu\text{A}$	-0.6	-1.2	-1.8	V
I _{DSS}	Drain Current	$V_{DS} = 5 \text{ V}, V_{GS} = 0 \text{ V}$	20.0		40.0	mA
y _{fs}	Forward Transfer Admittance	$V_{DS} = 5 \text{ V}, V_{GS} = 0 \text{ V}, f = 1 \text{ kHz}$	30	40		mS
C _{iss}	Input Capacitance	$V_{DS} = 5 \text{ V}, V_{GS} = 0 \text{ V}, f = 1 \text{ MHz}$		6.0		pF
C _{rss}	Reverse Transfer Capacitance	$V_{DS} = 5 \text{ V}, V_{GS} = 0 \text{ V}, f = 1 \text{ MHz}$		2.3		pF
N _F	Noise Figure	$V_{DS} = 5 \text{ V}, V_{GS} = 0 \text{ V}, f = 100 \text{ MHz}$		2.1	2.8	dB


Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

TYPICAL PERFORMANCE CHARACTERISTICS (Continued)

CPH6 2.90x1.60x0.90, 0.95PCASE 318BD ISSUE A

DATE 20 SEPT 2024

14.5M, 2018. 2. CONTROLLING DIMENSION: MILLIMETERS

1

1.401de

ring and

