Alternator Voltage Regulator Darlington Driver

CS3341, CS3351, CS387

The CS3341/3351/387 integral alternator regulator integrated circuit provides the voltage regulation for automotive, 3 phase alternators.

It drives an external power Darlington for control of the alternator field current. In the event of a charge fault, a lamp output pin is provided to drive an external darlington transistor capable of switching on a fault indicator lamp. An overvoltage or no STATOR signal condition activates the lamp output.

The CS3341 and CS3351 are available in SOIC 14 packages. The

 V_{CC}

IGN

Sense

LAMP

 V_{SUP}

Figure 1. Block Diagram

ELECTRICAL CHARACTERISTICS (-40°C < T_A < 125°C, -40°C < T_J < 150°C, 9.0 V ≤ V_{CC} ≤

PACKAGE PIN DESCRIPTION

PACKAGE PIN #			
SOIC-14	Flip Chip	PIN SYMBOL	FUNCTION
1	1	Driver	Output driver for external power switch-Darlington
2	2	GND	Ground
3, 6, 7, 9, 13	3	NC	No Connection
4	4	OSC	Timing capacitor for oscillator
5	5	Lamp	Base driver for lamp driver indicates no stator signal or overvoltage condition
8	6	IGN	Switched ignition powerup
10	7	Stator	Stator signal input for stator timer (CS3351 also powerup)
11	8	Sense	Battery sense voltage regulator comparator input and protection
12	9	V _{CC}	Supply for IC
14	10	SC	Short circuit sensing

ORDERING INFORMATION

Device	Package	Shipping [†]	
CS3341YD14	SOIC-14	55 Units/Rail	
CS3341YD14G	SOIC-14 (Pb-Free)	55 Units/Rail	
CS3341YDR14	SOIC-14	2500 Tape & Reel	
CS3341YDR14G	SOIC-14 (Pb-Free)	2500 Tape & Reel	
CS3351YD14	SOIC-14	55 Units/Rail	
CS3351YD14G	SOIC-14 (Pb-Free)	55 Units/Rail	
CS3351YDR14	SOIC-14	2500 Tape & Reel	
CS3351YDR14G	SOIC-14 (Pb-Free)	2500 Tape & Reel	
CS387H	Flip Chip	Contact Sales	

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

REGULATION WAVEFORMS

The CS3341/3351/387 utilizes proportion control to maintain regulation. Waveforms depicting operation are shown in Figures 4, 5 and 6, where $V_{BAT/N}$ is the divided down voltage present on the Sense pin using R1 and R2 (Figure 7). A sawtooth waveform is generated internally. The amplitude of this waveform is listed in the electric parameter section as proportion control. The oscillator voltage is summed with $V_{BAT/N}$, and compared with the internal voltage regulator (V_{REG}) in the regulation

comparator which controls the field through the output "Device Driver."

Figure 4 shows typical steady state operation. A 50% duty cycle is maintained.

Figure 5 shows the effect of a drop in voltage on ($V_{BAT/N}$ + V_{OSC}). Notice the duty cycle increase to the field drive.

Figure 6 shows the effect of an increase in voltage (above the regulation voltage) on $(V_{BAT/N} \ensuremath{\mathsf{AT/N}}$

SOIC 14 NB CASE 751A-03 ISSUE L

DATE 03 FEB 2016

- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
 2. CONTROLLING DIMENSION: MILLIMETERS.
 3. DIMENSION & DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE PROTRUSION SHALL BE 0.13 TOTAL IN EXCESS OF AT MAXIMUM MATERIAL CONDITION.
 4. DIMENSIONS D AND E DO NOT INCLUDE MOLD PROTRUSIONS.
 5. MAXIMUM MOLD PROTRUSION 0.15 PER SIDE.

SIDE.

GENERIC **MARKING DIAGRAM***

14	A	A	A	A	A	A	H
	2	XX	хх	хх	хх	XG	
	0	A	٩W	LY۱	٨٧	/	
[1	A	IJ	H	H	H	H	I

XXXXX	= Specific Device Code
A	= Assembly Location
WL	= Wafer Lot
Y	= Year
WW	= Work Week
G	= Pb-Free Package

STYLES ON PAGE 2

DATE 03 FEB 2016

STYLE 7: PIN 1. ANODE/CATHODE 2. COMMON ANODE 3. COMMON CATHODE 4. ANODE/CATHODE 5. ANODE/CATHODE

onsemi, , and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or incruit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi