B C Sa

ORDERING INFORMATION

Part Number	Package	Lead Forming	DBC Material	Pb–Free and RoHS Compliant	Operating Temperature (T _A)	Packing Method
FAM65CR51AXZ1	APM16–CDA	Y–Shape	ALN	Yes	–40°C ∼ 125°C	Tube
FAM65CR51AXZ2	APM16-CDB	L–Shape	ALN	Yes	–40°C ~ 125°C	Tube

Pin Configuration and Description

Figure 1. Pin Configuration

Pin Number	Pin Name	Pin Description	
1, 2	AC1	Phase 1 Leg of the PFC Bridge	
3	NC	Not Connected	
4	NC	Not Connected	
5, 6	B+	Positive Battery Terminal	
7, 8	Q1 Source	Source Terminal of Q1	
9	Q1 Gate	Gate Terminal of Q1	
10	Q2 Gate	Gate Terminal of Q2	
11, 12	Q2 Source	Source Terminal of Q2	
13	NC	Not Connected	
14	NC	Not Connected	
15, 16	AC2	Phase 2 Leg of the PFC Bridge	

Table 1. PIN DESCRIPTION

INTERNAL EQUIVALENT CIRCUIT

Figure 2. Internal Block Diagram

Table 2. ABSOLUTE MAXIMUM RATINGS OF MOSFET (T_J = 25° C, Unless Otherwise Specified)

Symbol	Parameter	Мах	Unit
V _{DS} (Q1~Q2)	Drain-to-		

	Table 3. ELECTRICAL	SPECIFICATIONS O	F MOSFET ((T₁ = 25°C,	Unless Otherwis	e Specified)
--	---------------------	------------------	------------	-------------	-----------------	--------------

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
BV _{DSS}	Drain-to-					

Symbol	Parameter	Rating	Unit
V _{RRM}	Peak Repetitive Reverse Voltage (Note 4)	650	V
E _{AS}	Avalanche Energy (17 A, 1 mH)	144	mJ
۱ _F	Continuous Rectified Forward Current, T _C < 148°C	30	А
I _{F,MAX}	Non–Repetitive Forward Surge Current, $T_C = 25^{\circ}C$, 10 µs	1100	А
I _{F,MAX}	Non–Repetitive Forward Surge Current, $T_C = 150^{\circ}C$, 10 µs	1000	А
I _{FSM}	Non-Repetitive Peak Surge Current (Sine Half Wave, Tp = 8.3 ms)	110	А
PD	Power Dissipation ($T_C = 25^{\circ}C$)	166	W
TJ	Maximum Junction Temperature	-55 to +175	°C
T _C	Maximum Case Temperature	-40 to +125	°C
T _{STG}	Storage Temperature	-40 to +125	°C

Table 4. ABSOLUTE MAXIMUM RATINGS OF THE BOOST DIODE (T_J = 25°C, Unless Otherwise Specified)

4. V_{RRM} and I_F value referenced to TO220–2L Auto Qualified Package Device FFSP3065B_F085

Table 5. ELECTRICAL SPECIFICATIONS OF THE BOOST DIODE (T_J = 25° C, Unless Otherwise Specified)

Symbol	Parameter	Test Conditions		Min	Тур	Max	Unit
V _{DC}	DC Blocking Voltage	I _R = 200 μA	T _C = 25°C	650	-	-	V
V _F	Instantaneous Forward Voltage	I _F = 30 A	$T_C = 25^{\circ}C$	-	1.38	1.7	V
			T _C = 125°C	-	1.6	2.0	V
			T _C = 175°C	-	1.72	2.4	V
I _R	Instantaneous Reverse Current	V _R = 650 V	$T_C = 25^{\circ}C$	-	0.5	40	μΑ
			T _C = 125°C	-	1.0	80	μΑ
			T _C = 175°C	-	2.0	160	μΑ
Q _C	Total Capacitive Charge	V _R = 400 V	$T_C = 25^{\circ}C$	-	43	-	nC
С	Total Capacitance	V _R = 1 V	f = 100 kHz		1280		pF
		V _R = 200 V	f = 100 kHz		139		
		V _R = 400 V	f = 100 kHz		108		

Table 6. THERMAL RESISTANCE

	Parameters		Тур	Max	Unit
$R_{\theta JC}$ (per MOSFET chip)	Q1,Q2 Thermal Resistance Junction-to-Case (Note 5)	-	0.19	0.27	°C/W
D					

 $R_{\theta JS}$

PARAMETER DEFINITIONS

Reference to Table 3: Parameter of MOSFET Electrical Specifications

BV _{DSS}	Q1, Q2 MOSFET Drain-to-Source Breakdown Voltage The maximum drain-to-source voltage the MOSFET can endure without the avalanche breakdown of the body- drain P-N junction in off state. The measurement conditions are to be found in Table 3. The typ. Temperature behavior is described in Figure 13
V _{GS(th)}	Q1, Q2 MOSFET Gate to Source Threshold Voltage The gate-to-source voltage measurement is triggered by a threshold ID current given in conditions at Table 4. The typ. Temperature behavior can be found in Figure 10
R _{DS(ON)}	Q1, Q2 MOSFET On Resistance RDS(on) is the total resistance between the source and the drain during the on state. The measurement conditions are to be found in Table 3. The typ behavior can be found in Figure 11 and Figure 12 as well as Figure 17
9fs	Q1, Q2 MOSFET Forward Transconductance

Figure 3. Timing Measurement Variable Definition

Table 8. PARAMETER OF SWITCHING CHARACTERISTICS

Turn–On Delay (t _{d(on)})	This is the time needed to charge the input capacitance, Ciss, before the load current ID starts flowing. The measurement conditions are described in the Table 3. For signal definition please check Figure 3 above.
Rise Time (t _r)	The rise time is the time to discharge output capacitance, Coss. After that time the MOSFET conducts the given load current ID. The measurement conditions are described in the Table 3. For signal definition please check Figure 3 above.

Turn–On Time (t_{on})

TYPICAL CHARACTERISTICS – MOSFETs

TYPICAL CHARACTERISTICS – DIODES

APMCD-A16 / 12LD, AUTOMOTIVE MODULE

1

1. DIMENSIONING

SION: MILLIMETERS

GENERIC MARKING DIAGRAM*

_____"

APMCD-B16 / 12LD, AUTOMOTIVE MODULE CASE MODGK ISSUE D

DATE 04 NOV 2021

GENERIC MARKING DIAGRAM*

*This information is generic. Please refer to device data sheet for actual part marking. Pb–Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking.

onsemi, , and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or incruit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi