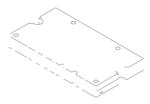
# Boost Converter Stage in APM16 Series for Multiphase and Semi-Bridgeless PFC

# FAM65CR51XZ1, FAM65CR51XZ2

#### Features

- Integrated SIP or DIP Boost Converter Stage Power Module for On–board Charger (OBC) in EV or PHEV
- 5 kV/1 sec Electrically Isolated Substrate for Easy Assembly
- Creepage and Clearance per IEC60664-1, IEC 60950-1
- Compact Design for Low Total Module Resistance
- Module Serialization for Full Traceability
- Low Thermal Resistance Due to the Used ALN Substrate
- AEC-Q101 & AQG324 Qualified and PPAP Capable
- UL94V–0 Compliant
- These Devices are Pb-Free and are RoHS Compliant


#### Applications

• PFC Stage of an On-board Charger in PHEV or EV

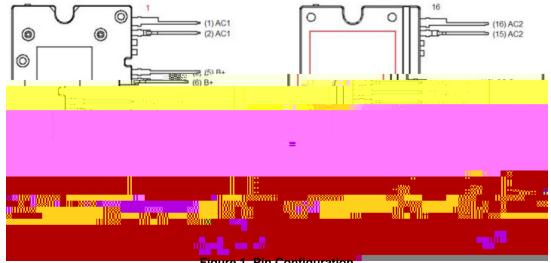
#### **Benefits**

- Enable Design of Small, Efficient and Reliable System for Reduced Vehicle Fuel Consumption and CO<sub>2</sub> Emission
- Simplified Assembly, Optimized Layout, High Level of Integration, and Improved Thermal Performance








XXXX = Specific Device Code ZZZ = Lot ID AT = Assembly & Test Location Y = Year WW = Work Week NNN = Serial Number

1

#### ORDERING INFORMATION

| Part Number  | Package   | Lead Forming | DBC Material | Pb–Free and<br>RoHS Compliant | Operating<br>Temperature (Ta) | Shipping        |
|--------------|-----------|--------------|--------------|-------------------------------|-------------------------------|-----------------|
| FAM65CR51XZ1 | APMCD-A16 | Y–Shape      | AIN          | Yes                           | –40°C~125°C                   | 72 Units / Tube |
| FAM65CR51XZ2 | APMCD-B16 | L–Shape      | AIN          | Yes                           | –40°C~125°C                   | 72 Units / Tube |

#### Pin Configuration and Block Description



#### Figure 1. Pin Configuration

#### Table 1. PIN DESCRIPTION

| Pin No. | Name      | Description                   |
|---------|-----------|-------------------------------|
| 1, 2    | AC1       | Phase 1 Leg of the PFC Bridge |
| 3       | NC        | Not Connected                 |
| 4       | NC        | Not Connected                 |
| 5, 6    | B+        | Positive Battery Terminal     |
| 7, 8    | Q1 Source | Source Terminal of Q1         |
| 9       | Q1 Gate   | Gate Terminal of Q1           |
| 10      | Q2 Gate   | Gate Terminal of Q2           |
| 11, 12  | Q2 Source | Source Terminal of Q2         |
| 13      | NC        | Not Connected                 |
| 14      | NC        | Not Connected                 |
| 15, 16  | AC2       | Phase 2 Leg of the PFC Bridge |

#### **INTERNAL EQUIVALENT CIRCUIT**

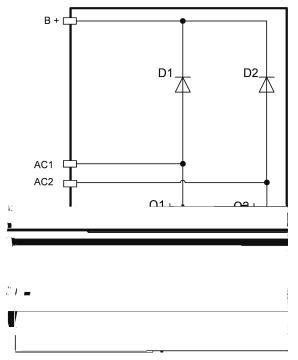



Figure 2. Internal Block Diagram

#### Table 2. ABSOLUTE MAXIMUM RATINGS OF MOSFET (T<sub>J</sub> = 25°C unless otherwise noted)

| Symbol                  | nbol Parameter                                                                    |             | Unit |  |
|-------------------------|-----------------------------------------------------------------------------------|-------------|------|--|
| V <sub>DS</sub> (Q1~Q2) | Drain-to-Source Voltage                                                           | 650         | V    |  |
| V <sub>GS</sub> (Q1~Q2) | Gate-to-Source Voltage                                                            | ±20         | V    |  |
| I <sub>D</sub> (Q1~Q2)  | Drain Current Continuous (T <sub>C</sub> = 25°C, V <sub>GS</sub> = 10 V) (Note 1) | 64          | А    |  |
|                         | Drain Current Continuous ( $T_C = 100^{\circ}C$ , $V_{GS} = 10$ V) (Note 1)       | 40          | А    |  |
| E <sub>AS</sub> (Q1~Q2) | Single Pulse Avalanche Energy (Note 2)                                            | 623         | mJ   |  |
| PD                      | Power Dissipation (T <sub>C</sub> = 25°C, V <sub>GS</sub> = 10 V) (Note 1)        | 463         | W    |  |
| ТJ                      | T <sub>J</sub> Maximum Junction Temperature                                       |             | °C   |  |
| т <sub>с</sub>          | Maximum Case Temperature                                                          | -40 to +125 | °C   |  |
| T <sub>STG</sub>        | Storage Temperature                                                               | -40 to +125 | °C   |  |

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

Maximum continuous current and power, without switching losses, to reach T<sub>J</sub> = 150°C respectively at T<sub>C</sub> = 25°C and T<sub>C</sub> = 100°C; defined by design based on MOSFET R<sub>DS(ON)</sub> and max. R<sub>θJC</sub> and not subject to production test
Starting T<sub>J</sub> = 25°C, I<sub>AS</sub> = 6.5 A, R<sub>G</sub> = 25 Ω

DBC Substrate 0.63 mm AlN

| Symbol             | Parameter                                                   | Max         | Unit |
|--------------------|-------------------------------------------------------------|-------------|------|
| V <sub>RRM</sub>   | Peak Repetitive Reverse Voltage (Note 5)                    | 600         | V    |
| V <sub>RWM</sub>   | Working Peak Reverse Voltage (Note 5)                       | 600         | V    |
| V <sub>R</sub>     | DC Blocking Voltage                                         | 600         | V    |
| I <sub>F(AV)</sub> | Average Rectified Forward Current $T_C = 25^{\circ}C$       | 15          | А    |
| I <sub>FSM</sub>   | Non-Repetitive Peak Surge Current (Half Wave 1 Phase 60 Hz) | 45          | А    |
| Τ <sub>J</sub>     | Maximum Junction Temperature                                | -55 to +175 | °C   |
| T <sub>C</sub>     | Maximum Case Temperature                                    | -40 to +125 | °C   |
| T <sub>STG</sub>   | Storage Temperature                                         | -40 to +125 | °C   |
| E <sub>AVL</sub>   | Avalanche Energy (2.85 A, 1 mH)                             | 4           | mJ   |

#### Table 4. ABSOLUTE MAXIMUM RATINGS OF THE BOOST DIODE (T<sub>J</sub> = 25°C unless otherwise noted) (Note 4)

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

4. Defined by design, not subject to production test

5. V<sub>RRM</sub> and I<sub>F(AV)</sub> value referenced to TO220-2L Auto Qualified Package Device ISL9R1560P\_F085

#### Table 5. ELECTRICAL SPECIFICATIONS OF THE BOOST DIODE (T<sub>J</sub> = 25°C unless otherwise noted)

| Symbol          | Parameter                                                                                                                              | Test Conditions                                          |                        | Min | Тур  | Max | Unit |
|-----------------|----------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|------------------------|-----|------|-----|------|
| ۱ <sub>R</sub>  | Instantaneous Reverse Current                                                                                                          | V <sub>R</sub> = 600 V                                   | $T_C = 25^{\circ}C$    | -   | -    | 100 | μΑ   |
|                 |                                                                                                                                        |                                                          | T <sub>C</sub> = 125°C | -   | _    | 1   | mA   |
| V <sub>FM</sub> | Instantaneous Forward Voltage (Note 7)                                                                                                 | I <sub>F</sub> = 15 A                                    | $T_C = 25^{\circ}C$    | -   | 1.65 | 2.2 | V    |
|                 |                                                                                                                                        |                                                          | T <sub>C</sub> = 125°C | -   | 1.24 | 1.7 | V    |
| t <sub>rr</sub> | Reverse Recovery Time                                                                                                                  | $I_{\rm F} = 15  {\rm A}$                                | $T_C = 25^{\circ}C$    | -   | 29   | -   | ns   |
| t <sub>a</sub>  | Time to reach peak reverse current                                                                                                     | d <sub>IF</sub> /dt = 200 A/μs<br>V <sub>R</sub> = 390 V | $T_C = 25^{\circ}C$    | -   | 16   | -   | ns   |
| t <sub>b</sub>  | Time from peak $I_{RRM}$ to projected zero crossing of $I_{RRM}$ based on a straight line from peak $I_{RRM}$ through 25% of $I_{RRM}$ | (Note 6)                                                 | $T_{C} = 25^{\circ}C$  | -   | 13   | -   | ns   |
| Q <sub>rr</sub> | Reverse Recovered Charge                                                                                                               | 1                                                        | $T_C = 25^{\circ}C$    | -   | 43   | -   | nC   |

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

6. Defined by design, not subject to production test

7. Test pulse width = 300  $\mu$ s, Duty Cycle = 2%

#### Table 6. THERMAL RESISTANCE

| Parameters                        |                                                     |   | Тур  | Max  | Unit |
|-----------------------------------|-----------------------------------------------------|---|------|------|------|
| $R_{\theta JC}$ (per MOSFET chip) | Q1, Q2 Thermal Resistance Junction-to-Case (Note 8) | - | 0.19 | 0.27 | °C/W |
| $R_{\theta JS}$ (per MOSFET chip) | Q1, Q2 Thermal Resistance Junction-to-Sink (Note 9) | _ | 0.62 | -    | °C/W |
| $R_{\theta JC}$ (per DIODE chip)  | D1, D2 Thermal Resistance Junction-to-Case (Note 8) | _ | 0.74 | 1.1  | °C/W |
| $R_{\theta JS}$ (per DIODE chip)  | D1, D2 Thermal Resistance Junction-to-Sink (Note 9) | - | 1.65 | _    | °C/W |

R<sub>0JC (junction to case)</sub>Test method compliant with MIL STD 883–1012.1, from case temperature under the chip to case temperature measured below the package at the chip center, Cosmetic oxidation and

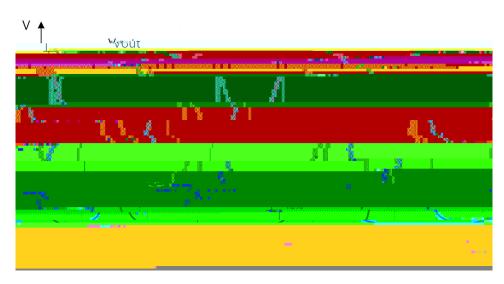
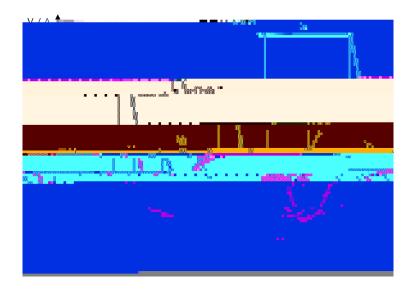
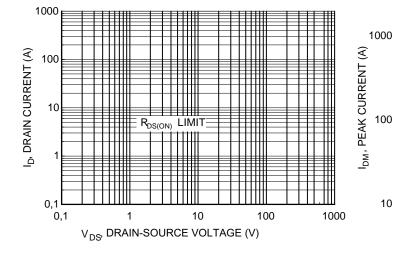




Figure 3. Timing Measurement Variable Definition


#### Table 9. PARAMETER OF SWITCHING CHARACTERISTICS

Turn-On Delay (t



#### 10 0.060 $T_{C} = 25^{\circ}C$ 8 0.055 V 6 0.050 4 0.045 2 0 0.040 80 120 160 20 40 60 80 0 40 0 CHARGE (nC) ID, DRAIN CURRENT (A)





t, PULSE WIDTH (sec)

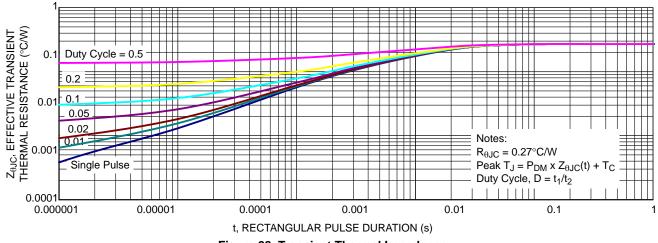
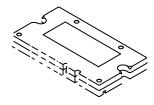



Figure 28. Transient Thermal Impedance

### APMCD-A16 / 12LD, AUTOMOTIVE MODULE




1

1. DIMENSIONING

SION: MILLIMETERS

GENERIC MARKING DIAGRAM\*

\_\_\_\_\_"



#### APMCD-B16 / 12LD, AUTOMOTIVE MODULE CASE MODGK ISSUE D

DATE 04 NOV 2021

#### GENERIC MARKING DIAGRAM\*

\*This information is generic. Please refer to device data sheet for actual part marking. Pb–Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking.

onsemi, , and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <a href="http://www.onsemi.com/site/pdf/Patent-Marking.pdf">www.onsemi.com/site/pdf/Patent-Marking.pdf</a>. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or incruit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi