e '

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
BV _{DSS}	Drain-to-Source Breakdown Voltage	$I_D = 1 \text{ mA}, V_{GS} = 0 \text{ V}$	650	-	-	V
V _{GS(th)}	Gate to Source Threshold Voltage	$V_{GS} = V_{DS}$, $I_D = 3.3$ mA	3.0	-	5.0	V
R _{DS(ON)}	Q1 – Q4 MOSFET On Resistance	$V_{GS} = 10 \text{ V}, \text{ I}_{D} = 20 \text{ A}$	-	44	51	mΩ
R _{DS(ON)}	Q1 – Q4 MOSFET On Resistance	V_{GS} = 10 V, I_D = 20 A, T_J = 125 C (Note 4)	-	79	-	mΩ
9fs	Forward Transconductance	$V_{DS} = 20 \text{ V}, I_D = 20 \text{ A} (\text{Note 4})$	-			

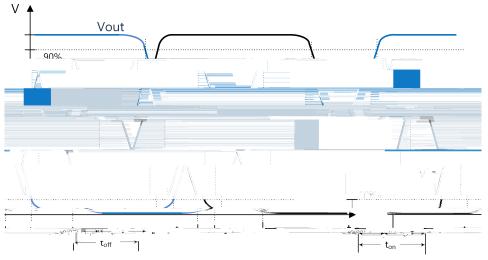


Figure 3. Timing Measurement Variable Definition

Table 7. PARAMETER OF SWITCHING CHARACTERISTICS

Turn–On Delay (t _{d(on)})	This is the time needed to charge the input capacitance, Ciss, before the load current ID starts flowing. The measurement conditions are described in the Table 4. For signal definition please check Figure 3 above.		
Rise Time (t _r)	The rise time is the time to discharge output capacitance, Coss. After that time the MOSFET conducts the given load current ID. The measurement conditions are described in the Table 4. For signal definition please check Figure 3 above.		

Turn–On Time (t

TYPICAL CHARACTERISTICS

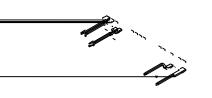

Figure 4. Normalized Power Dissipation vs. Case

Figure 5. Maximum Continuous I_D vs. Case

TYPICAL CHARACTERISTICS

Figure 10. On-Resistance vs. Gate-to-Source

APMCA-A16 / 16LD, AUTOMOTIVE MODULE CASE MODGF ISSUE C

•

DATE 03 NOV 2021

onsemi, , and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or incruit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi