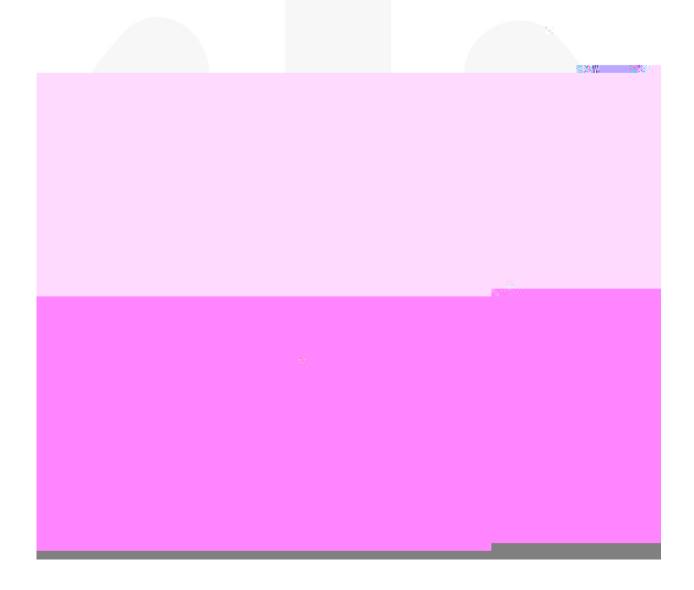
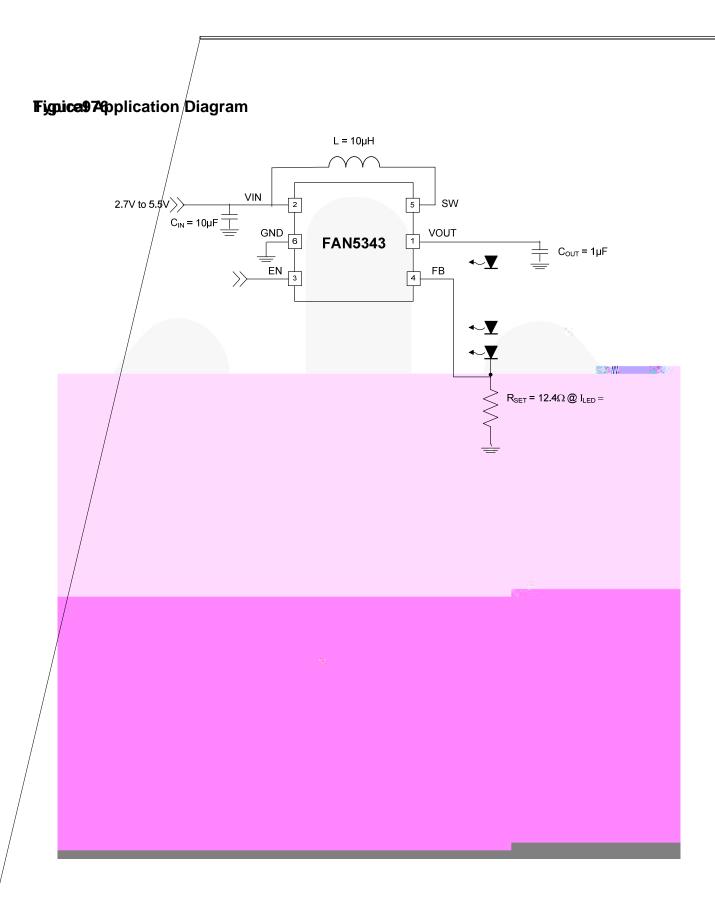


Is Now Part of


To learn more about ON Semiconductor, please visit our website at www.onsemi.com


ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor product, product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its

FAN5343 6-LED Series Boost LED Driver with Integrated Schottky

Pin Configuration

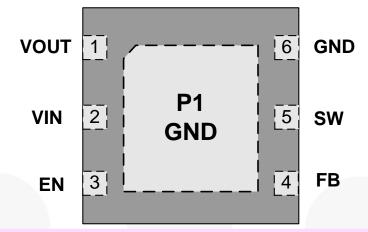
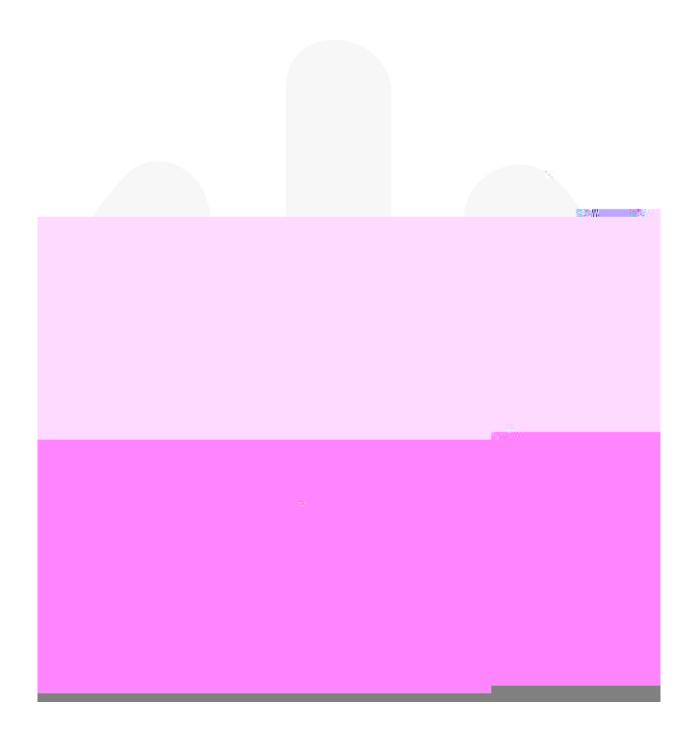
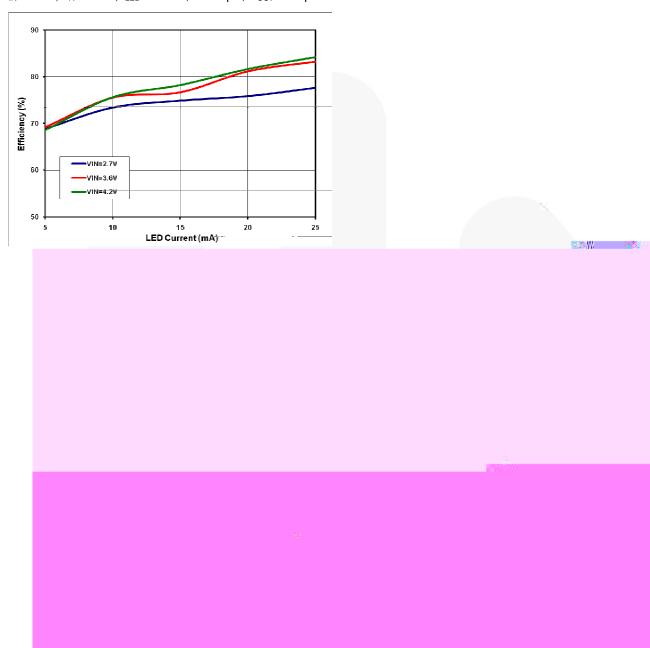



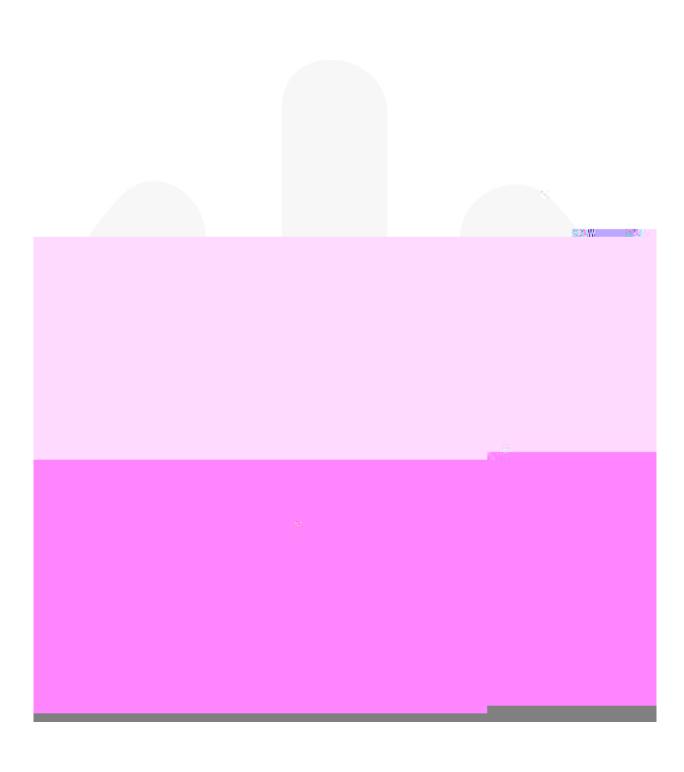
Figure 3. UMLP6 Package (Top View)

Pin Definitions

Pin	#	Name	Description		
1		VOUT	Boost Output Voltage. Output of the boost regulator. Connect the LEDs to this pin. Connect C _{OUT} to GND.		
2		VIN	Input Voltage. Connect to power source and decouple with CIN to GND.		
3		EN	Enable Brightness Control. Program dimming levels by driving this pin with digital pulses.		
4		FB /	Voltage Feedback. The boost regulator regulates this pin to 0.25V to control the LED string current. Tie this pin to a current setting resistor (R _{SET}) between GND and the cathode of the LED string.		
5		SW	Switching Node. Tie inductor L1 from the VIN to SW pin.		
6		GND	Ground. Tie directly to a GND plane.		

Electrical Specifications


 V_{IN} = 2.7V to 5.5V and T_A = -40°C to +85°C unless otherwise noted. Typical values are at T_A = 25°C and V_{IN} = 3.6V.


Symbol	Parameter	Conditions	Min.	Тур.	Max.	Units	
Power Su	pplies						
I _{SD}	Shutdown Supply Current	EN = GND, V _{IN} = 3.6V		0.30	0.75	μΑ	
	Lie des Velteses Les les et Three hald	V _{IN} Rising	2.10	2.35	2.60	V	
V_{UVLO}	Under-Voltage Lockout Threshold	V _{IN} Falling	1.90	2.15	2.40	V	
V _{UVHYST}	Under-Voltage Lockout Hysteresis			250		mV	
EN: Enab	le Pin						
V _{IH}	HIGH-Level Input Voltage		1.2			V	
V _{IL}	LOW-Level Input Voltage				0.4	V	
R _{EN}	EN Pull-Down Resistance		200	300	400	kΩ	
t _{LO}	EN Low Time for Dimming	V _{IN} = 3.6V; See Figure 14	0.5		300.0	μs	
t _{HI}	Time Delay Between Steps	V _{IN} = 3.6V; See Figure 14	0.5	8539	W. SE	μs	
T _{SD}	EN Low, Shutdown Pulse Width	V _{IN} = 3.6V; from Falling Edge of EN	1			ms	
Feedback	and Reference						
V_{FB}	Feedback Voltage	I_{LED} = 20mA from -40°C to +85°C, 2.7V V_{IN} 5.5V	237	250	263	mV	
I _{FB}	Feedback Input Current	V _{FB} = 250mV		0.1	1.0	μΑ	
Power Ou	tputs						
р	Baset Switch On Basistanes	$V_{IN} = 3.6V, I_{SW} = 100mA$		600		mΩ	
R _{DS(ON)_Q1}	Boost Switch On-Resistance	$V_{IN} = 2.7V, I_{SW} = 100mA$		650			
I _{SW(OFF)}	SW Node Leakage ⁽²⁾	$\begin{split} EN &= 0, \ V_{IN} = V_{SW} = V_{OUT} = 5.5V, \\ V_{LED} &= 0 \end{split}$		0.1	2.0	μА	
I _{LIM-PK}	Boost Switch Peak Current Limit V _{IN} = 3.6V			750		mA	
Oscillator			ran Bu				
f _{SW}	Boost Regulator Switching Frequency		1.0	1.2	1.4	MHz	
Outp <mark>ut a</mark> r	d Protection						
V	Boost Output Over-Voltage Protection			24.5		V	
V_{OVP}	OVP Hysteresis			1.0		V	
V_{TLSC}	V _{OUT} Short Circuit Detection Threshold	V _{OUT} Falling		V _{IN} – 1.4		V	
V _{THSC}	V _{OUT} Short Circuit Detection Threshold		V _{IN} – 1.2		V		
D _{MAX}	Maximum Boost Duty Cycle (3,4)		85			%	

D_{MINDDDDVc50.851} V(N)8**T**J263.9 .96 BT0 Tc Tj-0.013%

Typical Characteristics

 $V_{IN}=3.6V,\,T_A=25^{\circ}C,\,I_{LED}=25mA,\,L=10\mu H,\,C_{OUT}=1.0\mu F$

Functional Description

Overview

The FAN5343 is an inductive current-mode boost serial LED driver that achieves LED current regulation by maintaining 0.25V across the R_{SET} resistor. The current through the LED string (I_{LED}) is therefore given by:

$$I_{LED} = \frac{0.25}{R_{SET}} \tag{1}$$

The voltage V_{OUT} is determined by the the sum of the forward voltages across each LED, plus the voltage across R_{SET} , which is always 250mV.

UVLO and Soft-Start

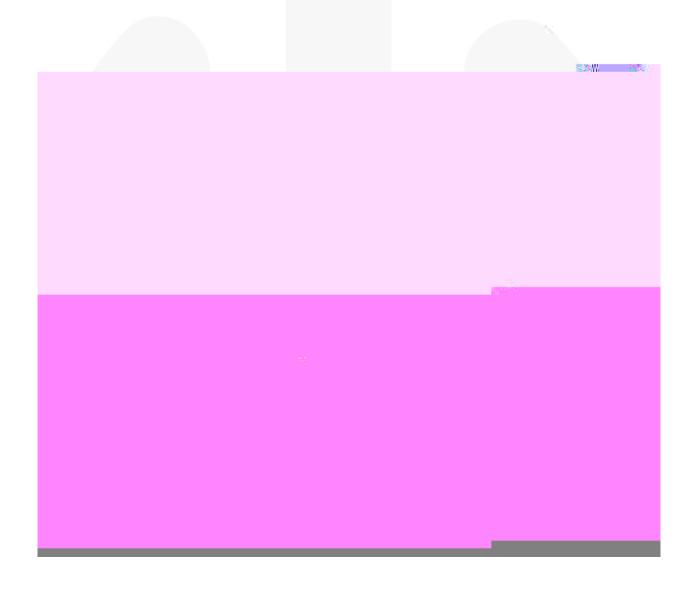
If EN has been LOW for more than 1ms, the IC may initiate a "cold start" soft-start cycle when EN rises, provided V_{IN} is above the UVLO threshold.

Digital Interface

The FAN5343 implements a single-wire digital interface to program the LED brightness to one of thirty two (32) levels spaced in linear steps. With this single-wire solution, the FAN5343 does not require the system processor to constantly supply a signal to drive the LEDs.

Digital Dimming Control

The FAN5343 starts driving the LEDs at the maximum brightness level. After startup, the control logic is ready to accept programming pulses to decrease the brightness level by the positive edges applied to the EN pin. Figure 14 illustrates the digital pulse dimming control for the FAN5343.


Over-Current and Short-Circuit Detection

Application Information

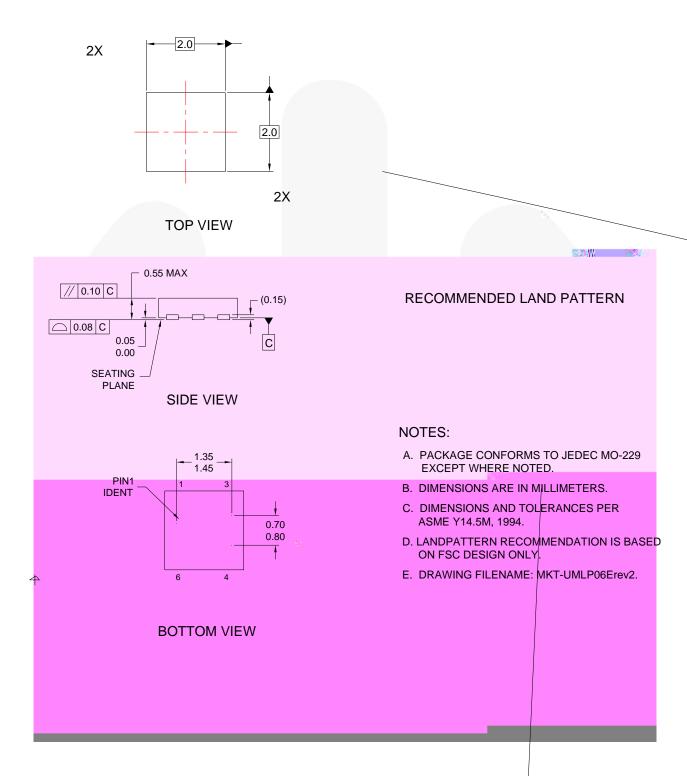
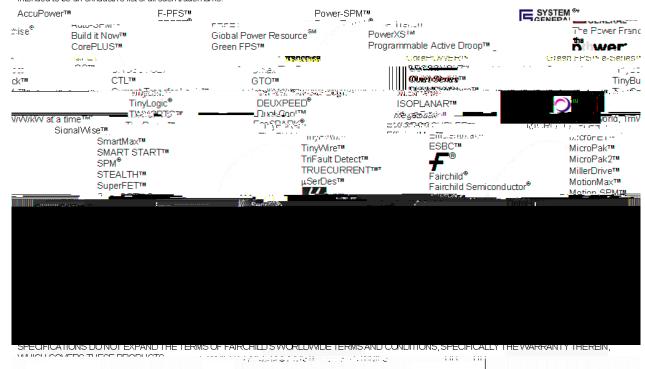

Inductor and Output Capacitor Selection

Table 1. Recommended External Components

# of LEDs	L	Part Number	Manufacturer	Min. C _{OUT}	Part Number	Manufacturer
		LQH43MN100K03	Murata			
5.6	10 OuH	NI CV32T-100K-PFR	TDK	1.00uF	UMK212B.I105KG	Taivo Yuden

Physical Dimensions



TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

LIFE SUPPORT POLICY

