

se

- ΧХ = Specific Device Number
- ZZ = Lot Code

А

- Μ = Date Code
- = Assembly Site Code = Pb Free. WLCSP are Pb–Free.

Table 1. ORDERING INFORMATION

Part Number	V _{FLOAT} (V)	Specific Device Number Marking (XX)	Package	Packing Method [†]
FAN54120MP420X	4.20	20	DFN6, 2x2 mm	3000 / Tape & Reel
FAN54120MP425X	4.25	25	(Pb Free)	
FAN54120MP435X	4.35	35		
FAN54120UC420X	4.20	V4	WLCSP-6, 1.36x0.76 mm	3000 / Tape & Reel
FAN54120UC425X	4.25	V5	(Pb Free)	
FAN54120UC435X	4.35	V6		

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

BLOCK DIAGRAM

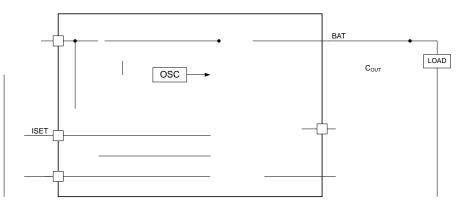
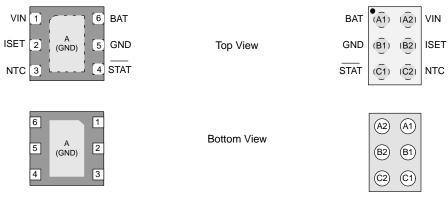



Figure 2. Simplified Block Diagram

PIN CONNECTIONS

Table 3. PIN DEFINITIONS

DFN Pin	WLCSP Pin	Pin Name	Description
1	A2	VIN	Input Voltage. Connect CIN bypass directly to VIN and GND pins on top layer.
2	B2	ISET	Set Charge Current. Connect R_{SET} directly to GND to set the maximum input/charging current (I_{FAST}).
3	C2	NTC	NTC input. Connect to battery pack NTC to provide JEITA "safe-charging" functionality. See "NTC Pin" applications section for additional usage information.
4	C1	STAT	Status. Open-drain output used to indicate charge and/or fault status. Internally, there is a weak pull-up ($R_{\overline{STAT}}$) to BAT. This pin is also used to enable Power Back operation.
5, A	B1	GND	Ground. Connect to system GND plane. $C_{\rm IN}$ and $C_{\rm OUT}$ also connect directly to this pin on top layer.
6	A1	BAT	Output. Connect to system load and positive terminal of battery. Bypass with $C_{\text{OUT}}, \ \text{connected directly to BAT}$ and GND pins on top layer.

Table 4. ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter		Max	Unit
V _{IN}	Voltage on VIN Pin	-1.2	28.0	V
V _{IN_SLEW}	VIN Rise Time, $V_{IN} > 6 V$		10	V/µsec
V _{BAT}	Voltage on BAT Pin	-0.3	6.3	V
V _X	Voltage on All Other Pins	-0.3	(Note 3)	V
ESD	Electrostatic Discharge Protection Level, HBM per JESD22–A114		1500	V
	Electrostatic Discharge Protection Level, CDM per JESD22–C101		2000	V
LU	Latch Up per JESD78, Class I, 25 C		100	mA
Т _Ј	Junction Temperature	-40	+150	С
T _{STG}	Storage Temperature	-65	+150	С
T _{LS}	Lead Soldering Temperature, 10 Seconds		+260	С

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these

Table 5. RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Min	Max	Unit
V _{IN}	Voltage on VIN Pin	4	6	V
V _{BAT}	Battery Voltage	2.5	4.5	V
T _A	Ambient Temperature	-30	+85	С
TJ	Junction Temperature	-30	+120	С

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

NOTE: The Recommended Operating Conditions table defines the conditions for actual device operation using the circuit of Figure 1, with the Recommended External Components shown in Table 2. Recommended operating conditions are specified to ensure

Table 7. ELECTRICAL CHARACTERISTICS (Unless otherwise specified, circuit of Figure 1 with VIN = 5.0 V, VFLOAT = 4.2 V,
V_{BAT} = 3.9 V, R_{SET} = 1.0 k Ω , over recommended T_A operating temperature range. Typical values are at 25 C.) (continued)

Symbol	Parameter	Condition	Min	Тур	Max	Unit
CHARGER VOLTAGE REGULATION						
V _{BATMIN}	Pre-to-Fast Charge Threshold	Rising V _{BAT}	2.9	3.1	3.3	V
V _{RCH}	Battery Recharge Indicator Threshold	V _{BAT} Falling Below V _{FLOAT}				

Table 7. ELECTRICAL CHARACTERISTICS (Unless otherwise specified, circuit of Figure 1 with VIN = 5.0 V, VFLOAT = 4.2 V,
V _{BAT} = 3.9 V, R _{SET} = 1.0 k Ω , over recommended T _A operating temperature range. Typical values are at 25 C.) (continued)

Symbol	Parameter	Condition	Min	Тур	Max	Unit
THERMAL PR	ROTECTION	•				
I _{TREG}	Adaptive Thermal Regulation Foldback (Note 7)		40		80	% I _{FAST}
T _{SDOWN}	Thermal Shutdown Threshold (Note 7) (Note 8)	T_J Rising	130	145	160	С
	Hysteresis(Note 7)	T _J Falling		T _{REG}		С
t _{TSD_QUAL}	Thermal Shutdown Qualification Time (Note 7)	T_J Rising		1		msec
t _{DIE_T}	Die Temperature Sampling Rate (Note 7)			32		msec
TIMERS						
toos oo	Pre_Charge Fault Timer (Note 7)			32		msac

tPRE_SC	Pre-Charge Fault Timer (Note 7)			32		msec	l
tosc	Internal Oscillator Accuracy	Applies to All Timers/Counters	-15		+15	%	1
t _{IN_REVAL}	Input Re–Validation Attempt Period (Note						

TYPICAL CHARACTERISTIC

Unless otherwise specified, circuit of Figure 1 with V_{IN} = 5.0 V, V_{FLOAT} = 4.2 V, V_{BAT} = 3.8 V, R_{SET} = 1.0 k Ω , T_A = 25 C.

Figure 5. Sleep Mode Discharge Current

Figure 6. Start–Up VIN Insertion, V_{BAT} = 3.8 V

Figure 7. Start–Up at VIN Insertion, V_{BAT} = 2.9 v

Figure 8. Power Back Mode Quiescent Current

OPERATION / APPLICATION INFORMATION

 $\begin{array}{l} \mbox{ISET Pin} \mbox{-} Setting the Charge Current (I_{FAST}) \\ R_{SET}, \mbox{ connected to the ISET pin, is used to establish the maximum charging current (I_{FAST}) \end{array}$

During the pre conditioning stage (Pre Charge), a constant current I_{PRE} $(I_{FAST}$

PCB Layout Guideline

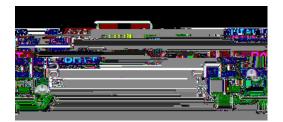


Figure 11. Example Layout, FAN54120MP (DFN)

Place C_{IN} and C_{OUT} as close possible to the IC. Connect the capacitors directly to the appropriate IC pins on the top layer. Reference the circuit to the system GND plane, typically on an inner layer, using a via in the IC DAP and/or at the GND side of C_{OUT} . The GND side of R_{SET} should be routed with a trace directly to IC GND, rather than using a via to the GND plane. This prevents transient currents in GND plane from influencing the IC's current regulation.

The same practices should be applied to the WLCSP version. Due to the lack of a DAP on the CSP, the GND side of C_{IN} should be connected by via to the system GND plane.

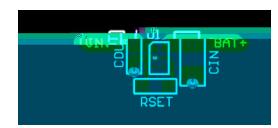
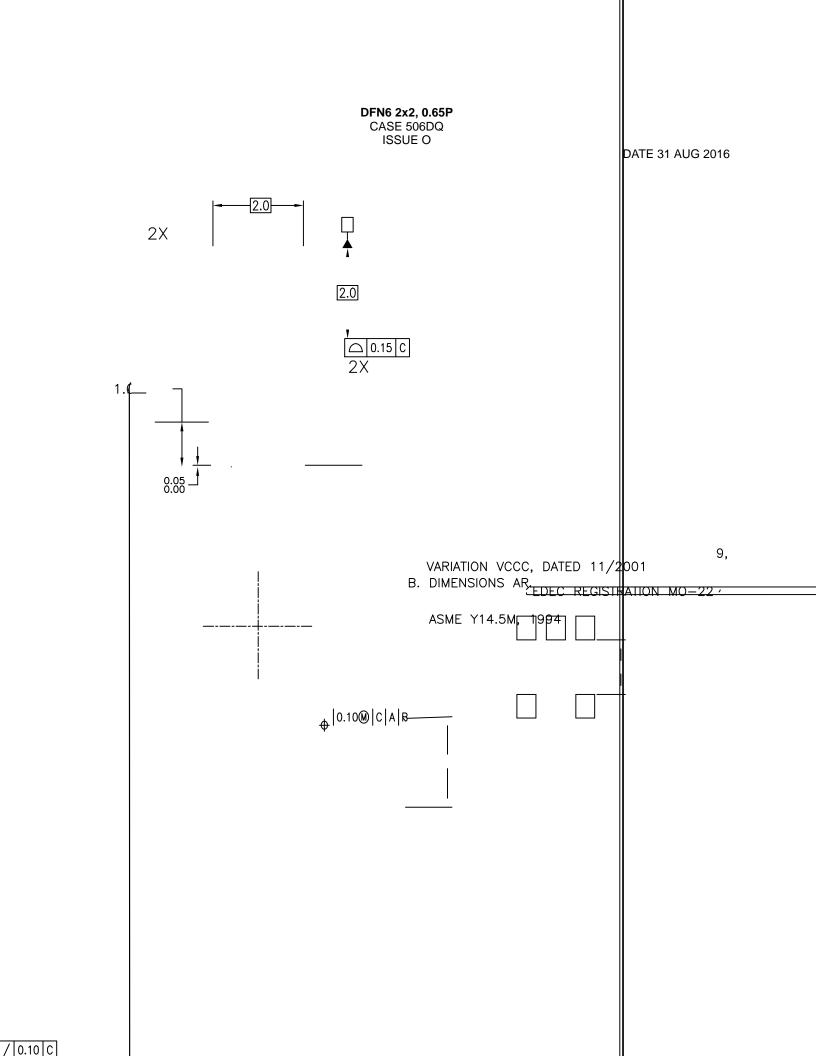



Figure 12. Example Layout, FAN54120UC (CSP)

semi

NT NUMBER:	98AON02370H	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.			
ESCRIPTION:	WLCSP6 1.36x0.76x0.581		PAGE 1 OF 1		

onsemi, , and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or incruit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi