FGA25S125P 1250 V, 25 A Shorted-anode IGBT

Features

- · High Speed Switching
- Low Saturation Voltage: $V_{CE(sat)} = 1.8 \text{ V} @ I_{C} = 25 \text{ A}$
- · High Input Impedance
- · RoHS Compliant

Applications

• Induction Heating, Microwave Oven

General Description

Using advanced field stop trench and shorted-anode technology, Up\hat{\delta}\cdot\hat{\de

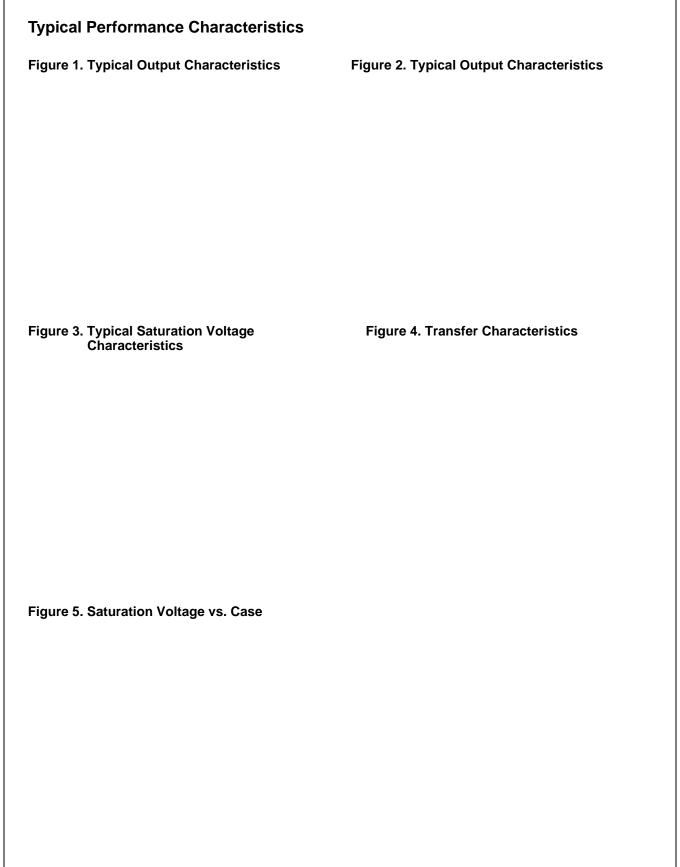
Absolute Maximum Ratings

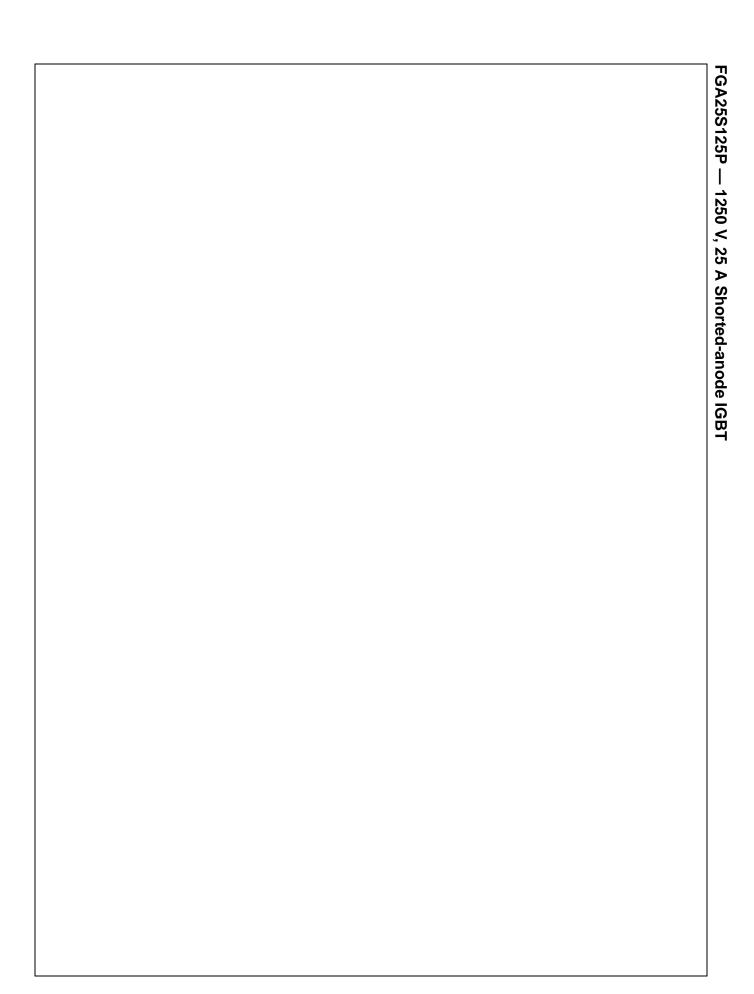
Symbol	Description		FGA25S125P-SN00337	Unit		
V _{CES}	Collector to Emitter Voltage		1250	V	1	
V _{GES}	Gate to Emitter Voltage		25	V	1	
I.	Collector Current	@ T _C = 25°C	50	А	1	
IC	Collector Current	$@ T_C = 100^{\circ}C$	25	А	1	
I _{CM (1)}	Pulsed Collector Current		75	А	1	I
le.	Diode Continuous Forward Current	@ T _C = 25°C	50	А	1	I
I _F	Diode Continuous Forward Current	$@ T_C = 100^{\circ}C$	25	А	1	
P _D	Maximum Power Dissipation	@Tx#ssymmercQubes#	SfFrgR ő VÅQ6cb∰ÿ / U,ØG6ccÆllymgcþỳÑQu£	2 95 Ğ J6 € W <u>F</u>Ø®ÒQu6ce	e Gÿ∙™‡aue6xT′@ÀRE	3rC®r
]	

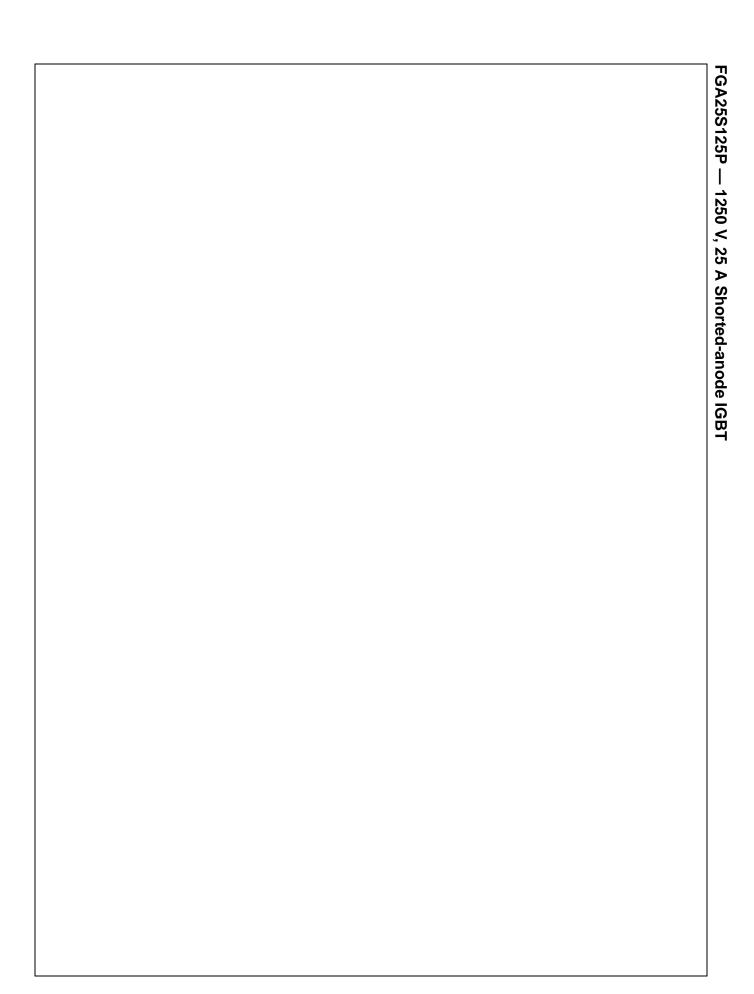
Thermal Characteristics

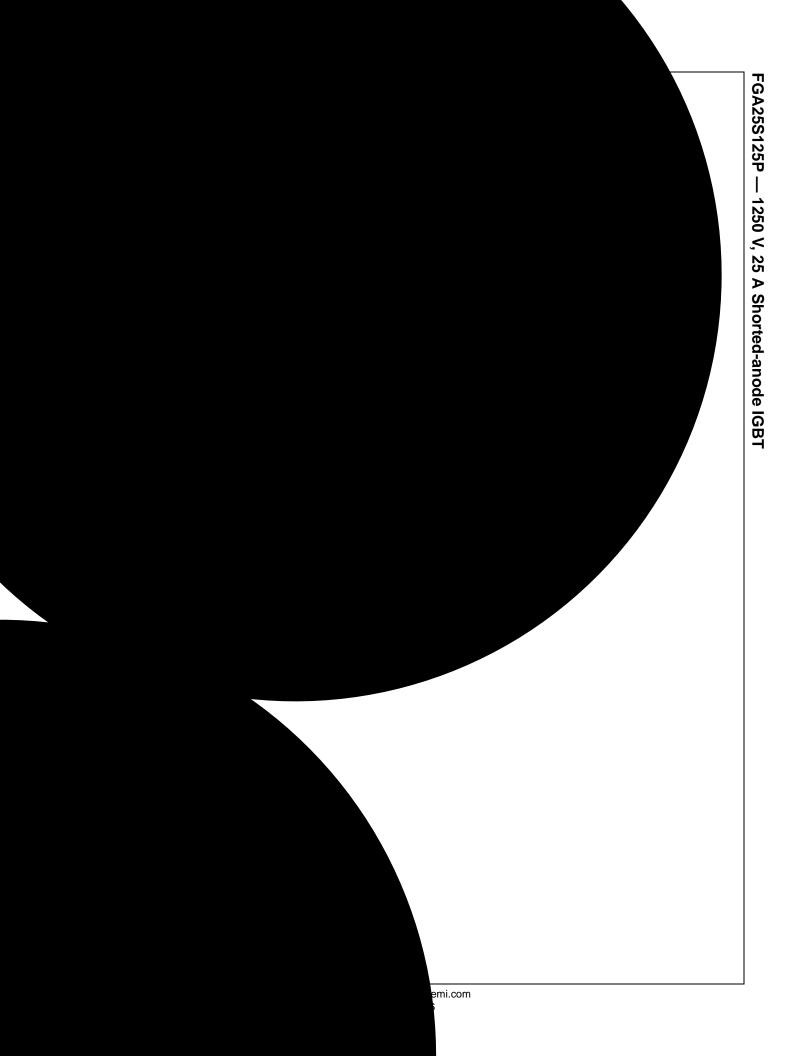
(IGBT)	Thermal Resistance, Junction to Case, Max	-	0.6	°C/W
R _{JA}	Thermal Resistance, Junction to Ambient, Max	-	40	°C/W

Notes:


1: Limited by Tjmax


Package Marking and Ordering Information


Device Marking	Device	Package	Reel Size	Tape Width	Quantity
FGA25S125P	FGA25S125P	TO-3PN	-	-	30
	-SN00337				


Electrical Characteristics of the IGBT $T_C = 25^{\circ}\text{C}$ unless otherwise noted

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
Off Charac	eteristics					
BV_CES	Collector to Emitter Breakdown Voltage	$V_{GE} = 0 \text{ V}, I_{C} = 1 \text{ mA}$	1250	-	-	V
${}^{\mathrm{BV}_{\mathrm{CES}}}$	Temperature Coefficient of Breakdown Voltage	$V_{GE} = 0 \text{ V}, I_{C} = 1 \text{ mA}$	-	1.2	-	V/°C
I _{CES}	Collector Cut-Off Current	$V_{CE} = 1250V, V_{GE} = 0V$	-	-	1	mA
I _{GES}	G-E Leakage Current	$V_{GE} = V_{GES}$, $V_{CE} = 0V$	-	-	±500	nA
On Charac	eteristics					
$V_{GE(th)}$	G-E Threshold Voltage	$I_C = 25$ mA, $V_{CE} = V_{GE}$	4.5	6.0	7.5	V
, ,		$I_C = 25A, V_{GE} = 15V$ $T_C = 25^{\circ}C$	-	1.8	2.35	V
V _{CE(sat)}	Collector to Emitter Saturation Voltage	$I_C = 25A, V_{GE} = 15V$ $T_C = 125^{\circ}C$	-	2.05	-	V
		$I_C = 25A, V_{GE} = 15V,$ $T_C = 175^{\circ}C$	-	2.16	-	V
		$I_F = 25A, T_C = 25^{\circ}C$	-	1.7	2.4	V
V_{FM}	Diode Forward Voltage	$I_F = 25A, T_C = 175^{\circ}C$	-	2.1	-	V
Dynamic C	Characteristics					
C _{ies}	Input Capacitance		-	2150	-	pF
C _{oes}	Output Capacitance	$V_{CE} = 30V_{,} V_{GE} = 0V_{,}$ f = 1MHz	-	48	-	pF
C _{res}	Reverse Transfer Capacitance	1 = 11011 12	-	36	-	pF
Switching	Characteristics					
t _{d(on)}	Turn-On Delay Time		-	24	-	ns
t _r	Rise Time		-	250	-	ns
$t_{d(off)}$	Turn-Off Delay Time	$V_{CC} = 600V, I_{C} = 25A,$	-	502	-	ns
t_{f}	Fall Time	$R_G = 10$, $V_{GE} = 15V$,	-	138	-	ns
E _{on}	Turn-@miSwitching Loss	Resistive Load, T _C = 25°C				

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any product herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fee