

Is Now Part of

To learn more about ON Semiconductor, please visit our website at <u>www.onsemi.com</u>

Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore (_), the underscore (_) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at <u>www.onsemi.com</u>. Please email any questions regarding the system integration to <u>Fairchild_questions@onsemi.com</u>.

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product critical, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any licese under its patent rights of others. ON Semiconductor resources and ediaged, intended, or authorized for use as a critical component in life support systems or any FDA

March 2016

FNA27560 600 V Motion SPM[®] 2 Series

Features

- UL Certified No. E209204 (UL1557)
- 600 V 75 A 3-Phase IGBT Inverter, Including Control ICs for Gate Drive and Protections
- Low-Loss, Short-Circuit-Rated IGBTs
- Very Low Thermal Resistance Using Al₂O₃ DBC Substrate
- Built-In Bootstrap Diodes and Dedicated Vs Pins Simplify PCB Layout
- Separate Open-Emitter Pins from Low-Side IGBTs for Three-Phase Current Sensing
- Single-Grounded Power Supply Supported
- Built-In NTC Thermistor for Temperature Monitoring and Management
- Adjustable Over-Current Protection via Integrated Sense-IGBTs
- Isolation Rating of 2500 Vrms / 1 min.

Applications

Motion Control - Industrial Motor (AC 200 V Class)

Related Resources

- AN-9121 Users Guide for 600V SPM[®] 2 Series
- AN-9076 Mounting Guide for New SPM[®] 2 Package
- AN-9079 Thermal Performance of Motion SPM[®] 2 Series by Mounting Torque

General Description

The FNA27560 is a Motion SPM[®] 2 module providing a fully-featured, high-performance inverter output stage for AC induction, BLDC, and PMSM motors. These modules integrate optimized gate drive of the built-in IGBTs to minimize EMI and losses, while also providing multiple on-module protection features: under-voltage lockouts, over-current shutdown, temperature sensing, and fault reporting. The built-in, high-speed HVIC requires only a single supply voltage and translates the incoming logic-level gate inputs to high-voltage, high-current drive signals to properly drive the module's internal IGBTs. Separate negative IGBT terminals are available for each phase to support the widest variety of control algorithms.

Figure 1. 3D Package Drawing (Click to Activate 3D Content)

Package Marking and Ordering Information

Device	Device Marking	Package	Packing Type	Quantity
FNA27560	FNA27560	SPMCA-A34	Rail	6

Pin Number	Pin Name	Pin Description		
1	Р	Positive DC-Link Input		
2	W	Output for W Phase		
3	V	Output for V Phase		
4	U	Output for U Phase		
5	N _W	Negative DC-Link Input for W Phase		
6	N _V	Negative DC-Link Input for V Phase		
7	NU	Negative DC-Link Input for U Phase		
8	R _{TH}	Series Resistor for Thermistor (Temperature Detection)		
9	V _{TH}	Thermistor Bias Voltage		
10	V _{CC(L)}	Low-Side Bias Voltage for IC and IGBTs Driving		
11	COM _(L)	Low-Side Common Supply Ground		
12	IN _(UL)	Signal Input for Low-Side U Phase		
13	IN _(VL)	Signal Input for Low-Side V Phase		
14	IN _(WL)	Signal Input for Low-Side W Phase		
15	V _{FO}	Fault Output		
16	C _{FOD}	Capacitor for Fault Output Duration Selection		
17	C _{SC}	Capacitor (Low-Pass Filter) for Short-Circuit Current Detection Input		
18	R _{SC}	Resistor for Short-Circuit Current Detection		
19	IN _(UH)	Signal Input for High-Side U Phase		
20	COM _(H)	High-Side Common Supply Ground		
21	V _{CC(UH)}	High-Side Bias Voltage for U Phase IC		
22	V _{BD(U)}	Anode of Bootstrap Diode for U Phase High-Side Bootstrap Circuit		
23	V _{B(U)}	High-Side Bias Voltage for U Phase IGBT Driving		
24	V _{S(U)}	High-Side Bias Voltage Ground for U Phase IGBT Driving		
25	IN _(VH)	Signal Input for High-Side V Phase		
26	V _{CC(VH)}	High-Side Bias Voltage for V Phase IC		
27	V _{BD(V)}	Anode of Bootstrap Diode for V Phase High-Side Bootstrap Circuit		
28	V _{B(V)}	High-Side Bias Voltage for V Phase IGBT Driving		
29	V _{S(V)}	High-Side Bias Voltage Ground for V Phase IGBT Driving		
30	IN _(WH)	Signal Input for High-Side W Phase		
31	V _{CC(WH)}	High-Side Bias Voltage for W Phase IC		
32	V _{BD(W)}	Anode of Bootstrap Diode for W Phase High-Side Bootstrap Circuit		
33	V _{B(W)}	High-Side Bias Voltage for W Phase IGBT Driving		
34	V _{S(W)}	High-Side Bias Voltage Ground for W Phase IGBT Driving		

Absolute Maximum Ratings ($T_J = 25^{\circ}C$, unless otherwise specified.) Inverter Part

Control Part

Bootstrap Diode Part

Total System

Thermal Resistance

Notes:

4. These values had been made an acquisition by the calculation considered to design factor.

FNA27560 600 V Motion SPM® 2 Series

Notes	
-------	--

 Short-circuit current protection functions only at the low-sides because the sense current is divided from main current at low-side IGBTs. Inserting the shunt resistor for monitoring the phase current at N_U, N_V, N_W terminal, the trip level of the short-circuit current is changed.

Conditions

I_F = 1.0 A, T_{.1} = 25°C

 I_F = 1.0 A, dI_F / dt = 50 A / μ

Min.

Тур.

2.2

Max.

8. The fault-out pulse width t_{FOD} depends on the capacitance value of C_{FOD} according to the following approximate equation : t_{FOD} = 0.8 x 10⁶ x C_{FOD} [s].

9. T_{TH} is the temperature of thermistor itself. To know case temperature (T_C), conduct experiments considering the application.

Bootstrap Diode Part

Parameter

Reverse-Recovery Time

Forward Voltage

Symbol

 V_{F}

t_{rr}

Control Part

(with the external sense resistance and RC filter connection)

ON Semiconductor and marks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor hardles, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthori

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81–3–5817–1050