ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidi of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be act on make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suita arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, conse Semiconductor products, includechnical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors har of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON S is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

FNA40560

Motion SPM® 45 Series

Features

- UL Certified No. E209204 (UL1557)
- 600 V 5 A 3-Phase IGBT Inverter with Integral Gate Drivers and Protection
- Low Thermal Resistance Using Ceramic Substrate
- · Low-Loss, Short-Circuit Rated IGBTs
- Built-In Bootstrap Diodes and Dedicated Vs Pins Simplify PCB Layout
- Built-In NTC Thermistor for Temperature Monitoring
- Separate Open-Emitter Pins from Low-Side IGBTs for Three-Phase Current Sensing
- Single-Grounded Power Supply
- · Optimized for 5 kHz Switching Frequency
- Isolation Rating: 2000 V_{rms} / min.

Applications

• Motion Control - Home Appliance / Industrial Motor

Related Resources

- AN-9070 Motion SPM® 45 Series Users Guide
- AN-9071 Motion SPM® 45 Series Thermal Performance Information
- AN-9072 Motion SPM® 45 Series Mounting Guidance
- RD-344 Reference Design (Three Shunt Solution)
- RD-345 Reference Design (One Shunt Solution)

General Description

FNA40560 is a Motion SPM® 45 module providing a fully-featured, high-performance inverter output stage for AC Induction, BLDC, and PMSM motors. These modules integrate optimized gate drive of the built-in IGBTs to minimize EMI and losses, while also providing multiple on-module protection features including under-voltlockouts, over-current shutdown, age monitoring, and fault reporting. The built-in, high-speed HVIC requires only a single supply voltage and translates the incoming logic-level gate inputs to the high-voltage, high-current drive signals required to properly drive the module's robust short-circuit-rated IGBTs. Separate negative IGBT terminals are available for each phase to support the widest variety of control algorithms.

Figure 1. Package Overview

Package Marking and Ordering Information

Device	Device Marking	Package	Packing Type	Quantity
FNA40560	FNA40560	SPMAA-A26	Rail	12

Integrated Power Functions

• 600 V - 5 A IGBT inverter for three-phase DC / AC power conversion (please refer to Figure 3)

Integrated Drive, Protection, and System Control Functions

- For inverter high-side IGBTs: gate drive circuit, high-voltage isolated high-speed level shifting control circuit Under-Voltage Lock-Out (UVLO) protection
- For inverter low-side IGBTs: gate drive circuit, Short-Circuit Protection (SCP)
 control supply circuit Under-Voltage Lock-Out (UVLO) protection
- Fault signaling: corresponding to UVLO (low-side supply) and SC faults
- Input interface: active-HIGH interface, works with 3.3 / 5 V logic, Schmitt trigger input

Pin Configuration

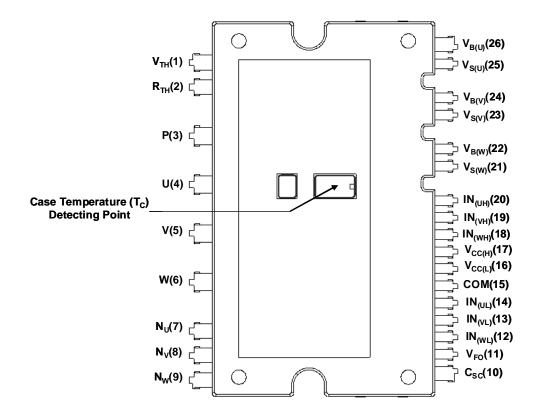
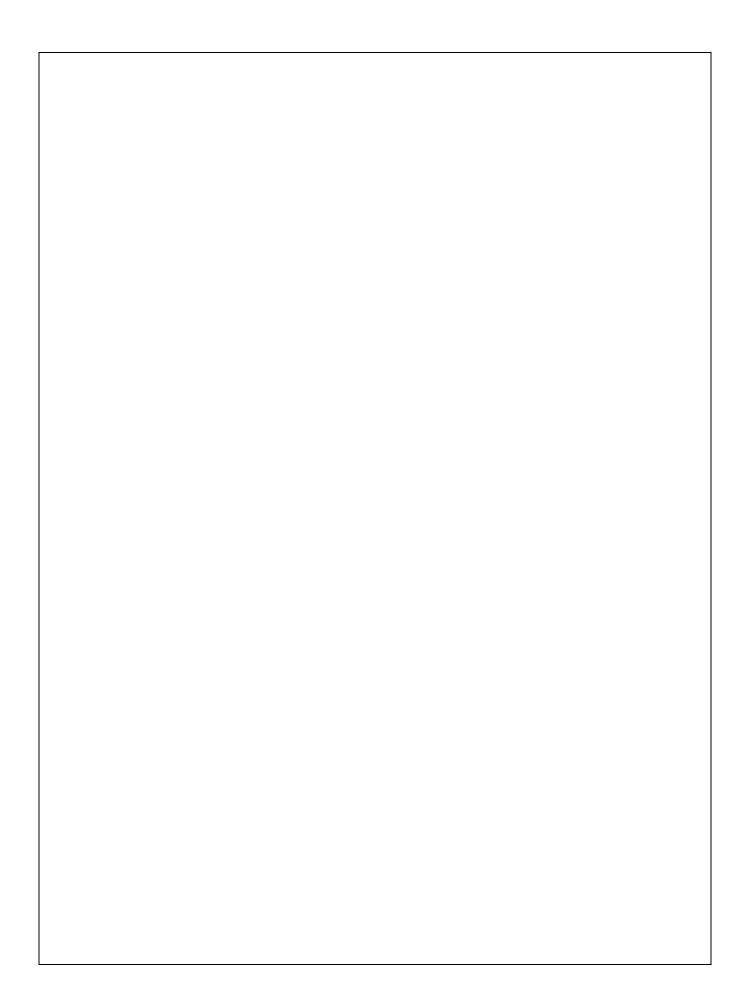



Figure 2. Top View

FNA40560 Motion SPM® 45 Series

nverter Part			
nd Notes:			

Electrical Characteristics (T _J = 25°C, unless otherwise specified.) Inverter Part	

FNA40560 Motion SPM® 45 Series

FNA40560 Motion SPM® 45 Series

FNA40560 Motion SPM® 45 Series

Time Charts of Protective Function ${\tt a1:Control\ supply\ voltage\ rises:\ after\ the\ voltage\ rises\ UV_{CCR},\ the\ circuits\ start\ to\ operate\ when\ next\ input\ is\ applied.}$ a2: Normal operation: IGBT ON and carrying current. a3 : Under-voltage detection (UV $_{CCD}$). a4: IGBT OFF in spite of control input condition. a5 : Fault output operation starts. a6 : Under-voltage reset (UV $_{CCR}$). a7: Normal operation: IGBT ON and carrying current. Figure 11. Under-Voltage Protection (Low-Side) b1 : Control supply voltage rises: after the voltage reaches UV

(with the external shunt resistance and CR connection)

- c1: Normal operation: IGBT ON and carrying current.
- c2 : Short-circuit current detection (SC trigger).
- c3: Hard IGBT gate interrupt.
- c4: IGBT turns OFF.
- c5 : Input "LOW": IGBT OFF state.
- c6: Input "HIGH": IGBT ON state, but during the active period of fault output, the IGBT doesn't turn ON.
- c7: IGBT OFF state.

Figure 13. Short-Circuit Protection (Low-Side Operation Only)

Input/Output Interface Circuit

Figure 14. Recommended MCU I/O Interface Circuit

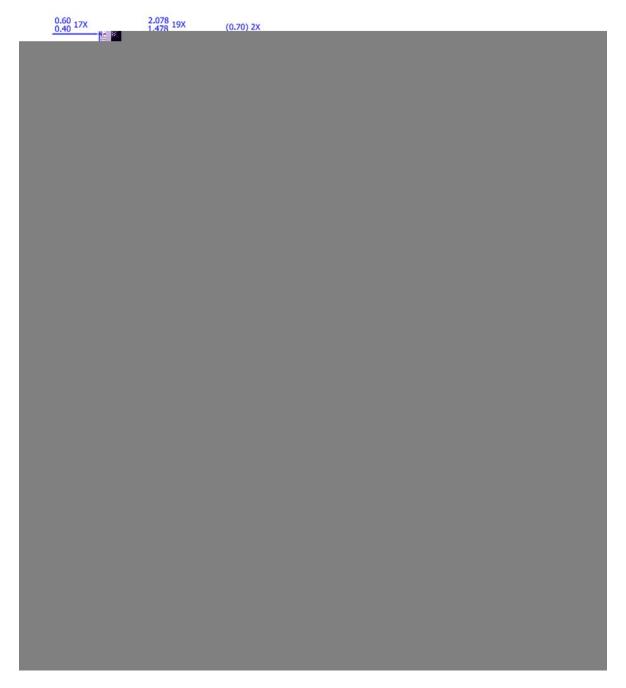

11. RC coupling at each input (parts shown dotted) might change depending on the PWM control scheme in the application and the wiring impedance of the application's printed circuit board. The input signal section of the Motion SPM[®] 45 product integrates a 5 k (

Figure 15. Typical Application Circuit

3rd Notes:

- 1) To avoid malfunction, the wiring of each input should be as short as possible (less than 2 3 cm).
- 2) By virtue of integrating an application-specific type of HVIC inside the Motion SPM[®] 45 product, direct coupling to MCU terminals without any optocoupler or transformer isolation is possible.
- 3) V_{FO} output is open-drain type. This signal line should be pulled up to the positive side of the MCU or control power supply with a resistor that makes I_{FO} up to 1 mA (please refer to Figure 14).
- 4) $C_{\mbox{\footnotesize{SP15}}}$ of around seven times larger than bootstrap capacitor $C_{\mbox{\footnotesize{BS}}}$ is recommended.
- 5) Input signal is active-HIGH type. There is a 5 k resistor inside the IC to pull down each input signal line to GND. RC coupling circuits is recommanded for the prevention of input signal oscillation. R_SC_{PS} time constant should be selected in the range 50 ~ 150 ns (recommended R_S = 100 , C_{PS} = 1 nF).
- 6) To prevent errors of the protection function, the wiring around $\rm R_{F}$ and $\rm C_{SC}$ should be as short as possible.
- 7) In the short-circuit protection circuit, please select the R_FC_{SC} time constant in the range 1.5 ~ 2 s.
- 8) The connection between control GND line and power GND line which includes the N_U, N_V, N_W must be connected to only one point. Please do not connect the control GND to the power GND by the broad pattern. Also, the wiring distance between control GND and power GND should be as short as possible.
- 9) Each capacitor should be mounted as close to th

Detailed Package Outline Drawings

Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or data on the drawing and contact a FairchildSemiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild's worldwide therm and conditions, specifically the the warranty therein, which covers Fairchild products.

Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings:

http://www.fairchildsemi.com/dwg/MO/MOD26AA.pdf

ON Semiconductor and in are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor and separating the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, emplo

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Phone: 421 33 790 2910

Japan Customer Focus Center

Phone: 81–3–5817–1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative