onse i

Integrated Power Functions

 600 V – 15 A IGBT inverter for three–phase DC / AC power conversion (refer to Figure 2)

Integrated Drive, Protection, and System Control Functions

- For inverter high-side IGBTs: gate-drive circuit, high-voltage isolated high-speed level-shifting control circuit, Under-Voltage Lock-Out Protection (UVLO)
- NOTE: Available bootstrap circuit example is given in Figures 14
- For inverter low-side IGBTs: gate-drive circuit, Short-Circuit Protection (SCP) control supply circuit, Under-Voltage Lock-Out Protection (UVLO)
- Fault signaling: corresponding to UVLO (Iow-side supply) and SC faults
- Input interface: active–HIGH interface, works with 3.3 / 5 V logic, Schmitt–trigger input

Pin Configuration

Figure 1. Top View

PIN DESCRIPTIONS

Pin No.	Pin Name	Pin Description		
1	V _{TH}	Thermistor Bias Voltage		
2	R _{TH}	Series Resistor for the Use of Thermistor (Temperature Detection)		
3	Р	Positive DC-Link Input		
4	U	Output for U-Phase		
5	V	Output for V–Phase		
6	W	Output for W–Phase		
7	NU	Negative DC-Link Input for U-Phase		
8	N _V	Negative DC-Link Input for V-Phase		
9	N _W	Negative DC-Link Input for W-Phase		
10	C _{SC}	Shut Down Input for Short-circuit Current Detection Input		
11	V _{FO}	Fault Output		
12	IN _(WL)	Signal Input for Low-Side W-Phase		
13	IN _(VL)	Signal Input for Low-Side V-Phase		
14	IN _(UL)	Signal Input for Low-Side U-Phase		
15	СОМ	Common Supply Ground		
16	V _{DD(L)}	Low-Side Common Bias Voltage for IC and IGBTs Driving		
17	V _{DD(H)}	High–Side Common Bias Voltage for IC and IGBTs Driving		
18	IN _(WH)	Signal Input for High–Side W–Phase		
19	IN(VH)	Signal Input for High–Side V–Phase		
20	IN _(UH)	Signal Input for High-Side U-Phase		
21	VS _(W)	Side V		

Internal Equivalent Circuit and Input/Output Pins

NOTES:

- Inverter high-side is composed of three normal-IGBTs, freewheeling diodes, and one control IC for each IGBT.
 Inverter low-side is composed of three sense-IGBTs, freewheeling diodes, and one control IC for each IGBT. It has gate drive and protection functions.
- 3. Inverter power side is composed of four inverter DC-link input terminals and three inverter output terminals.

Figure 2. Internal Block Diagram

ABSOLUTE MAXIMUM RATINGS ($T_J = 25^{\circ}C$, unless otherwise specified)

Symbol	Parameter	Conditions	Rating	Unit				
INVERTER PART								
V _{PN}	Supply Voltage	Applied between P – N_U , N_V , N_W	450	V				
V _{PN(Surge)}	Supply Voltage (Surge)	Applied between P – N_U , N_V , N_W	500	V				
V _{CES}	Collector – Emitter Voltage		600	V				
±Ι _C	Each IGBT Collector Current	$T_{C} = 25^{\circ}C, \ T_{J} < 150^{\circ}C$	15	А				
±I _{CP}	Each IGBT Collector Current (Peak)	$T_{C} = 25^{\circ}C$, $T_{J} < 150^{\circ}C$, Under 1 ms Pulse Width (Note 4)	30	A				
Pc	Collector Dissipation	$T_{C} = 25^{\circ}C$ per One Chip (Note 4)	38	W				
ТJ	Operating Junction Temperature		-40 ~ 150	°C				
CONTROL F	PART							
V _{DD}	Control Supply Voltage	Applied between $V_{DD(H)}$, $V_{DD(L)}$ – COM	20	V				
V _{BS}	High-Side Control Bias Voltage	Applied between $V_{B(U)}$ – $V_{S(U)}, V_{B(V)}$ – $V_{S(V)}, V_{B(W)}$ – $V_{S(W)}$	20	V				
V _{IN}	Input Signal Voltage	Applied between IN _(UH) , IN _(VH) , IN _(WH) , IN _(UL) , IN _(UL) , IN _(WL) , COM	–0.3 ~ V _{DD} + 0.3	V				
V _{FO}	Fault Output Supply Voltage	Applied between V _{FO} – COM	$-0.3 \sim V_{DD} + 0.3$	V				

ELECTRICAL CHARACTERISTICS (T _J = 25°C, 0	unless otherwise specified)
--	-----------------------------

Symbol		Parameter	Conditions		Min.	Тур.	Max.	Unit
INVERTER	R PART							
V _{CE(SAT)}		Collector – Emitter Saturation Voltage	$V_{DD} = V_{BS} = 15 V$ $V_{IN} = 5 V$	I _C = 15 A, T _J = 25°C	-	1.60	2.20	V
V _F		FWDi Forward Voltage	V _{IN} = 0 V	I _F = 15 A, T _J = 25°C	-	2.00	2.60	V
HS	t _{ON}	Switching Times	$\label{eq:VPN} \begin{array}{l} V_{PN} = 300 \text{ V}, V_{DD} = V_{BS} = 15 \text{ V}, \text{ I}_{C} = 15 \text{ A} \\ T_{J} = 25^{\circ}\text{C} \\ V_{IN} = 0 \text{ V} \leftrightarrow 5 \text{ V}, \text{ Inductive Load} \\ (\text{Note 6}) \end{array}$		0.40	0.80	1.30	μs
	t _{C(ON)}				-	0.20	0.50	μS
	t _{OFF}				-	0.85	1.35	μs
	t _{C(OFF)}				-	0.25	0.55	μs
	t _{rr}				-	0.10	-	μs
LS	t _{ON}				0.45	0.85	1.35	μS
	t _{C(ON)}				-	0.25	0.55	μS
	t _{OFF}		(Note 6)	-	0.90	1.40	μs	
	t _{C(OFF)}				-	0.25	0.55	μs
	t _{rr}				-	0.15	-	μs
I _{CES}		Collector – Emitter Leakage Current	$V_{CE} = V_{CES}$		-	-	1	mA

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. 6. t_{ON}

Figure 5. R T Curve of The Built In Thermistor

RECOMMENDED OPERATING CONDITIONS

				Value		
Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
V _{PN}	Supply Voltage	Applied between P – N_U , N_V , N_W	-	300	400	V
V _{DD}	Control Supply Voltage	Applied between $V_{DD(H), V_{DD(L)}} - COM$	13.5	15.0	16.5	V
V _{BS}	High-Side Bias Voltage	$ \begin{array}{l} \mbox{Applied between } V_{B(U)} - V_{S(U)}, \\ V_{B(V)} - V_{S(V)}, \ V_{B(W)} - V_{S}(W) \end{array} $	13.0	15.0	18.5	V
dV_{DD} / dt, dV_{BS} / dt	Control Supply Variation		-1	-	1	V / μs
t _{dead}	Blanking Time for Preventing Arm – Short	For each input signal	1	-	-	μS
f _{PWM}	PWM Input Signal	$\begin{array}{l} -40^\circ C \leq T_C \leq 125^\circ C, \\ -40^\circ C \leq T_J \leq 150^\circ C \end{array}$	-	-	20	kHz
V _{SEN}	Voltage for Current Sensing	Applied between N_U , N_V , N_W – COM (Including Surge–Voltage)	-4	-	4	V
PW _{IN(ON)}	Minimun Input Pulse Width	$V_{DD} = V_{BS} = 15 \text{ V}, \text{ I}_C \le 15 \text{ A},$	0.5	-	-	μs
PW _{IN(OFF)}		and DC Link N < 10 nH (Note 9)	0.5	-	-	
PW _{IN(ON)}	Minimun Input Pulse Width	$V_{DD} = V_{BS} = 15 \text{ V}, \text{ I}_C \le 30 \text{ A},$	1.2	-	-	μs
PW _{IN(OFF)} PW]	and DC Link N < 10 nH (Note 9)		-	-	

Lower Arms Control Input		
Protection Circuit state		
Internal IGBT Gate-Emitter Voltage	 <i>\$</i> \$	

Output Current

Sensing Voltage of Sense Resistor

Fault Output Signal

(with the external sense resistance and RC filter connection)

- c1 : Normal operation: IGBT ON and carrying current.
- c2 : Short-circuit current detection (SC trigger).

c3 : All low-side IGBTs gate are hard interrupted.

c4 : All low-side IGBTs turn OFF.

c5 : Fault output operation starts with a fixed pulse width according to the condition of the external capacitor CFOD.

c6 : Input HIGH: IGBT ON state, but during the active period of fault output, the IGBT doesn't turn ON.

c7 : Fault output operation finishes, but IGBT doesn't turn on until triggering the next signal from LOW to HIGH.

c8 : Normal operation: IGBT ON and carrying current.

Figure 12. Short Circuit Current Protection (Low Side Operation only)

Figure 14. Typical Application Circuit

PACKAGE MARKING AND ORDERING INFORMATION

Device	Device Marking	Package	Shipping
FNA41560T2	FNA41560T2	SPMAA-C26 / 26LD, PDD STD CERAMIC TYPE, LONG LEAD DUAL FORM TYPE (Pb-Free)	12 Units / Rail

SPM is registered trademark of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries.

onsemi, , and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or incruit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi