MAR

onsemi

USBT be-C® Analog A dio S i ch i h P o ec ion F nc ion

FSA4480

Description

FSA4480 is a high performance USB Type-C port multimedia switch which supports analog audio headsets. FSA4480 allows the sharing of a common USB Type-C port to pass USB2.0 signal, analog audio, sideband use wires and analog microphone signal. FSA4480 also supports high voltage on SBU port and USB port on USB Type-C receptacle side.

Features

Power Supply: V_{CC}, 2.7 V to 5.5 V USB High Speed (480 Mbps) Switch: SDD₂₁

DATA SHEET

www.onsemi.com

6D	= Specific
&K	= 2-digits
&2	= 2-digits
&Z	= Assembl
J–	= X– Coord
Р	= Y Coordi
UU	= Two Digi

*For onsemi inter

ORDER

Part Number FSA4480UCX

Table 1. PIN DESCRIPTIONS

No.	Pin	Name	Description	
1	A5	VCC	Power Supply (2.7 to 5.5 V)	
2	B5	GND	Chip ground	
3	D5	DP_R	USB/Audio Common Connector	
4	D4	DN_L	USB/Audio Common Connector	
5	E5	DP	USB Data (Differential +)	
6	E4	DN	USB Data (Differential –)	
7	C5	R	Audio – Right Channel	
8	C4	L		
9	A3	SBU1	Sideband use wire 1	
10	A2	SBU2	Sideband use wire 2	
11	C1	MIC	Microphone signal	
12	B2	AGND	Audio signal ground	
13	B94 522	2.709 -754 522.	7o307 p 600.378 .90709 15n4, 0 8 126.2551 514[.84d 600.378 .9071 15.307 ref 6rm8 1O2[01192,2	

Table 2. ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Min.	Max.	Unit
V _{CC}	Supply Voltage from VCC	-0.5	6.5	V
V _{CC_IN}	V _{CC_IN} , to GND	-0.5	20	V
V _{SW_C}	V_{DP_R} to GND, V_{DN_L} to GND	-3.5	20	V
V _{SW_USB}	V _{DP} to GND, V _{DN} to GND	-0.5	6.5	V
V _{SW_Audio}	V _L to GND, V _R to GND	-3.6	6.5	V
V _{V_SBU/GSBU}	V_{SBU1} to GND, V_{SBU2} to GND, V_{GSBU1} to GND, V_{GSBU1} to GND	-0.5	20	V
V _{VSBU_H}	VsBu1_H to GND, VsBu2_H to GND	-0.5	6.5	V
V _{I/O}	SENSE, MIC, DET, INT, to GND	-0.5	6.5	V
V _{CNTRL}	Control Input Voltage			

Table 3. RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Min.	Тур.	Max.	Unit
POWER	•		•		
V _{CC}	Supply Voltage	2.7	-	5.5	V
USB SWITCH					
V _{SW_USB}	V_{DP} to GND, V_{DN} to GND, V_{DP_R} to GND, V_{DN_L} to GND	0	-	3.6	V
AUDIO SWITC	H				
V _{SW_Audio}	V_{DP_R} to GND, V_{DN_L} to GND, V_L to GND, V_R to GND	-3.6	-	3.6	V
MIC SWITCH					
V _{VSBU_MIC}	V_{SBU1} to GND, V_{SBU2} to GND, V_{MIC} to GND	0	-	3.6	V
SENSE SWITC	н Н	-	-	-	-
V _{VGSBU_SEN}	VGSBU_SEN VGSBU1 to GND, VGSBU2 to GND, VSENSE to GND		-	3.6	V

SBU TO SBUX_H SWITCH

V_{VGSBU}

Table 4. DC ELECTRICAL CHARACTERISTICS

 (V_{CC})

Table 4. DC ELECTRICAL CHARACTERISTICS (continued)

 $(V_{CC} = 2.7 \text{ V to } 5.5 \text{ V}, V_{CC} \text{ (Typ.)} = 3.3 \text{ V}, T_A = -40 \text{ C to } 85 \text{ C}, \text{ and } T_A \text{ (Typ.)} = 25 \text{ C}, \text{ unless otherwise specified.})$

Symbol	Parameter	Condition	Power	Min.	Тур.	Max.	Unit
SENSE SWI	тсн		-	-			
V _{OV_TRIP}	Input OVP Lockout on GSBUx	Rising edge	$V_{\mbox{\scriptsize CC}}$: 2.7 V to 5.5 V	4.5	5	5.3	V
V _{OV_HYS}	Input OVP Hysteresis of GSBUx			-	0.3	-	V
SBUX PINS			-	-	_	-	
I _{OZ}	Off Leakage Current of SBUx	SBUx = 0 V to 3.6 V	V _{CC} : 2.7 V to 5.5 V	-3.0	-	3.0	μΑ
I _{OFF}	Power–Off Leakage Current Port SBUx	SBUx = 0 V to 3.6 V	Power off	-3.0	-	3.0	μΑ
V _{OV_TRIP}	Input OVP Lockout	Rising edge	$V_{\mbox{CC}}$: 2.7 V to 5.5 V	4.5	5	5.3	V
V _{OV_HYS}	Input OVP Hysteresis			-	0.3	-	V
MIC SWITCH	1		-	-			
I _{ON}	On Leakage Current of MIC Switch	SBUx = 0 V to 3.6 V, MIC is floating	V_{CC} : 2.7 V to 5.5 V	-3.0	-	3.0	μΑ
I _{OZ}	Off Leakage Current of MIC	MIC = 0 V to 3.6 V		-1.0	-	1.0	μΑ
I _{OFF}	Power Off Leakage Current of MIC	MIC = 0 V to 3.6 V	Power off	-1.0	_	1.0	μΑ
R _{ON_MIC}	MIC Switch On Resistance	Isw = 30 mA, Vsw = 3.6 V	V _{CC} : 2.7 V to 5.5 V	1.7	3.0	3.9	Ω
SBUX_H SW	/ITCH		•				
I _{ON}	On Leakage Current of SBUx_H Switch	SBUx = 0 V to 3.6 V, SBUx_H is floating	V_{CC} : 2.7 V to 5.5 V	-3.0	_	3.0	μΑ
I _{OZ}	Off Leakage of SBUx_H	SBUx_H =0 V to 3.6 V		-1	-	1	μΑ
I _{OFF}	Power Off Leakage Current of SBUx_H	SBUx_H = 0 V to 3.6 V	Power off	-1.0	-	1.0	μΑ
R _{ON_SBU}	SBUx_H Switch On Resistance	Isw = 30 mA, V_{SW} = 0 V to 3.6 V	$V_{\mbox{CC}}$: 2.7 V to 5.5 V	1.5	3.0	3.5	Ω

Table 4. DC ELECTRICAL CHARACTERISTICS (continued) (V_{CC} = 2.7 V to 5.5 V, V_{CC} (Typ.) = 3.3 V, T_A = -40 C to 85 C, and T_A (Typ.) = 25

Table 5. AC ELECTRICAL CHARACTERISTICS

 $(V_{CC} = 2.7 \text{ V to } 5.5 \text{ V}, V_{CC} \text{ (Typ.)} = 3.3 \text{ V}, T_A = -40 \text{ C to } 85 \text{ C}, \text{ and } T_A \text{ (Typ.)} = 25 \text{ C}, \text{ unless otherwise specified.})$

 Symbol
 Parameter
 Condition
 Power
 Min

Symbol	Parameter	Condition	Power	Min.	Тур.	Max.	Unit
AUDIO SWIT	СН						
t _{delay}	Audio Switch Turn On Delay Time	$DP_R = DN_L = 1 V,$ $R_L = 32 \Omega$	V _{CC} = 3.3 V	_	65	_	μs
t _{rise}	Audio Switch Turn On Rising Time (Note 1)	$DP_R = DN_L = 1 V,$ $R_L = 32 \Omega$		_	240	_	μs
tOFF	Audio Switch Turn Off Time	$DP_R = DN_L = 1 V,$ $R_L = 32 \Omega$		_	15	_	μs
X _{TALK}	Cross Talk (Adjacent)	f = 1 kHz, R _L = 50 Ω, V _{SW} = 1 V _{RMS}		_	-100	-	dB

BW

Table 5. AC ELECTRICAL CHARACTERISTICS (continued) (V_{CC} = 2.7 V to 5.5 V, V_{CC}

Table 6. I²C SPECIFICATION

 $(V_{CC} = 2.7 \text{ V to 5.5}, V_{CC} \text{ (Typ.)} = 3.3 \text{ V}, T_A = -40 \text{ C to 85 C. } T_A \text{ (Typ.)} = 25 \text{ C}, \text{ unless otherwise specified})$

			Fast Mode	
Symbol	Parameter	Min.	Max.	Unit
f _{SCL}	I ² C_SCL Clock Frequency		400	kHz
t _{HD;} STA	Hold Time (Repeated) START Condition	0.6		μs
t _{LOW}	Low Period of I ² C_SCL Clock	1.3		μs
t _{HIGH}	High Period of I ² C_SCL Clock	0.6		μs
t _{SU; STA}	Set-up Time for Repeated START Condition	0.6		μs
t _{HD; DAT}	Data Hold Time (Note 2)	0	0.9	μs
t _{SU; DAT}	Data Set-up Time (Note 3)	100		ns
t _r	Rise Time of I ² C_SDA and I ² C_SCL Signals (Note 3)	20 + 0.1C _b	300	ns
t _f	Fall Time of I ² C_SDA and I ² C_SCL Signals (Note 3)	20 + 0.1C _b	300	ns
t _{SU;} STO	Set-up Time for STOP Condition	0.6		μs
t _{BUF}	Bus-Free Time between STOP and START Conditions	1.3		μs
t _{SP}	Pulse Width of Spikes that Must Be Suppressed by the Input Filter	0	50	ns

Guaranteed by design, not production tested.
 A fast-mode I²C-bus device can be used in a standard-mode I²C-bus system, but the requirement t_{SU;DAT} 250 ns must be met. This is automatically the case if the device does not stretch the LOW period of the I²C_SCL signal. If such a device does stretch the LOW period of the I²C_SCL signal, it must output the next data bit to the I²C_SDA line t_{r_max} + t_{SU;DAT} = 1000 + 250 = 1250 ns (according to the standard-mode I²C bus specification) before the I²C_SCL line is released.

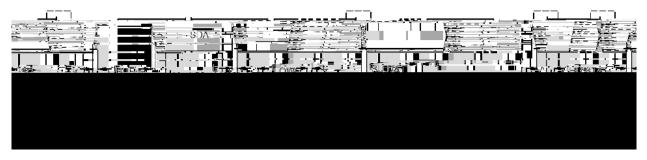


Figure 3. Definition of Timing for Full–Speed Mode Devices on the I²C Bus

C to 85 C, and T_A (Typ.) = 25 C)

		T _A =- 40 C to +85 C					
Condition	Power	Min.	Тур.	Max.	Unit		
f =⊞FM Hz, 100 m ¥⊊_{K-PK}, 100 m∀ DC bias	_∀CC =_3.3 ≚ <		•		₩		
f = 1 MHz, 100 mV _{PK-PK} , 100 mV DC bias			7.5		pF		
f = 1 MHz, 100 mV _{PK–PK} , 100 mV DC bias			3		pF		
f = 1 MHz, 100 mV _{PK–PK} , 100 mV DC bias			55		pF		
f = 1 MHz, 100 mV _{PK−PK} , 100 mV ଔ೮∿₩as			88		pF		
f = 1 MHz, 100 mV _{PK–PK,} DC bias,					•		
						_	

DEVICE ID Address: 00h Reset Value: 8'b 0000_1001 Type: Read

Bits	Name	Size	Description
7:6	Vendor ID	2	Vendor ID

OVP STATUS Address: 03h Reset Value: 8'b 0000_0000 Type: Read

Bits	Name	Size	Description
[7:6]	Reserved	2	Do Not Use
5	OVP on DP_R PIN	1	0: OVP event has not occurred 1: OVP event has occurred
4	OVP on DN_L PIN	1	0: OVP event has not occurred 1: OVP event has occurred
3	OVP on SBU1 PIN	1	0: OVP event has not occurred 1: OVP event has occurred
2	OVP on SBU2 PIN	1	0: OVP event has not occurred 1: OVP event has occurred
1	OVP on GSBU1 PIN	1	0: OVP event has not occurred 1: OVP event has occurred
0	OVP on GSBU2 PIN	1	0: OVP event has not occurred 1: OVP event has occurred

SWITCHING SETTING ENABLE

Address: 04h Reset Value: 8'b 1001_1000 Type: Read/Write

Bits	Name	Size	Description
7	Device Enable	1	0: Device Disable; L, R pull down by 10 k and other switch nodes will be high–Z for positive input. 1: Device Enable. Device Enable = 1 Device enable = 0 ENN = 1 Device Disable Device Disable ENN = 0 Device Enable Device Disable
6	SBU1_H to SBUx switches	1	0: Switch Disable; SBU1_H will be high-Z for positive input 1: Switch Enable
5	SBU2_H to SBUx switches	1	0: Switch Disable; SBU2_H will be high-Z for positive input 1: Switch Enable
4	DN_L to DN or L switches	1	0: Switch Disable; DN_L,DN will be high–Z for positive input. L pull down by 10 kohm1: Switch Enable
3	DP_R to DP or R switches	1	 0: Switch Disable; DP_R,DP will be high-Z for positive input. R pull down by 10 kohm 1: Switch Enable
2	Sense to GSBUx switches	1	0: Switch Disable; Sense,GSBU1 and GSBU2 will be high–Z for positive input1: Switch Enable
1	MIC to SBUx switches	1	0: Switch Disable: MIC will be high-Z for positive input.1: Switch Enable
0	AGND to SBUx switches	1	0: Switch Disable: AGND will be high–Z for positive input.1: Switch Enable

SWITCH SELECT Address: 05h Reset Value: 8'b 0001_1000 Type: Read/Write

Bits	Name	Size	Description
7	Reserved	1	Do Not Use
6	SBU1_H switches	1	0: SBU1_H to SBU1 switch ON 1: SBU1_H to SBU2 switch ON
5	SBU2_H switches	1	0: SBU2_H to SBU2 switch ON 1: SBU2_H to SBU1 switch ON
4	DN_L to DN or L switches	1	0: DN_L to L switch ON 1: DN_L to DN switch ON
3	DP_R to DP or R switches	1	0: DP_R to R switch ON 1: DP_R to DP switch ON
2	Sense to GSBUx switches	1	0: Sense to GSBU1 switch ON 1: Sense to GSBU2 switch ON
1	MIC to SBUx switches	1	0: MIC to SBU2 switch ON 1: MIC to SBU1 switch ON
0	AGND to SBUx switches	1	0: AGND to SBU1 switch ON 1: AGND to SBU2 switch ON

SWITCH STATUS0

Address: 06h Reset Value: 8'b 0000_0000 Type: Read Only

Bits	Name	Size	Description
[7:6]	Reserved	2	Do not use
[5:2]	Sense Switch Status	2	00: Sense switch is Open/Not Connected 01: Sense connected to GSBU1 10: Sense connected to GSBU2 11: Not Valid
[3:2]	DP_RSwitch Status	2	00: DP_R Switch Open/Not Connected 01: DP_Rconnected to DP 10: DP_Rconnected to R 11: Not Valid
[1:0]	DN_L switch Status	2	00: DN_L Switch Open/Not Connected 01: DN_L connected to DN 10: DN_L connected to L 11: Not Valid

SENSE SWITCH SLOW TURN-ON

Address: 0Bh Reset Value: 8'b 0000_0001 Type: Read/Write

Bits	Name	Size	Description
[7:0]	Switch turn on rising time setting	8	11111111: 25600 μS
			00000001: 200 μS

TIMING DELAY BETWEEN SENSE SWITCH ENABLE AND L SWITCH ENABLE

Address: 0Fh Reset Value: 8'b 0000_0000 Type: Read/Write

Bits	Name	Size	Description
[7:0]	Delay timing setting		

FUNCTION ENABLE

Address: 12h Reset Value: 8'b 0000_1000 Type: Read/Write

Bits	Name	Size	Description
7	Reserved	1	Do not use
6	DET I/O Control	1	1: DET pin is in Open/Drain Configuration 0: DET pin is in Push/Pull Configuration
5	RES detection range setting	1	1: 10k to 2560 k 0: 1k to 256 k
4	GPIO control enable	1	1: enable 0: disable
3	Slow turn on control enable	1	1: enable 0: disable
2	MIC auto break out control enable	1	1: enable 0: disable
1	RES detection enable	1	1: enable; will be changed to '0' after low resistance detection 0: disable
0	Audio jack detection and configuration enable	1	 enable; will be changed to '0' after audio jack detection and configuration disable

When GPIO control mode (manual switch control) is enable. 'Switch control' register is changed to read only. It will reflect switch status. I²C slave address is

RES DETECTION PIN SETTING

Address: 13h Reset Value: 8'b 0000_0000 Type: Read

Bits	Name	Size	Description
[7:3]	Reserved	5	Do not use
[2:0]	Pin selection	3	000: CC_IN 001: DP/R 010: DN_L 011: SBU1 100: SBU2 101: Do not use 111: Do not use

If RES detection pin is enable before setting PIN selection it will always do the CC_IN first. Recommend user to select the pin first before setting the RES detection pin enable.

RES VALUE Address: 14h

Reset Value: 8'b 1111_1111 Type: Read

Bits	Name	Size	Description
[7:0]	Detected resistance value	8	0000_0000 : R < 1 k
			1111_1111: R > 300 K

RES DETECTION THRESHOLD

Address: 15h Reset Value: 8'b 0001_0110 Type: Read

Bits	Name	Size	Description
[7:0]	RES detection threshold	8	Selection by 1 K Ω per step if Reg 12h [5] = 0 Selection by 10 K Ω per step if Reg 12h [5] = 0 Default Value = 22 K Ω 0000_0000: 1 K Ω /10 K Ω 1111_111: 256 K Ω / 2560 K Ω

RES DETECTION INTERVAL

Address: 16h Reset Value: 8'b 0000_0000 Type: Read

Bits	Name	Size	Description
[7:2]	Reserved	6	Do not use
[1:0]	RES detection interval	2	00: Single 01: 100 mS 10: 1 S 11: 10 S

AUDIO JACK STATUS

Address: 17h Reset Value: 8'b 0000_0001 Type: Read

Bits	Name	Size	Description
[7:3]	Reserved	4	Do not use
3	4pole	1	1: 4 Pole SBU2 to MIC, SBU1 to audio ground 0: others
2	4pole	,	

RES /AUDIO JACK DETECTION INTERRUPT MASK

Address: 19h Reset Value: 8'b 0000_0000 Type: Read Clear

Bits	Name	Size	Description
[7:3]	Reserved	5	Do Not Use
2	Audio jack detection and configuration	1	1: Mask Audio jack detection and configuration has occurred interrupt
1	Low resistance occurred	1	1: Low resistance has occurred interrupt
0	Low resistance detection	1	1: Low resistance detection has occurred interrupt

AUDIO JACK DETECTION REG1 VALUE

Address: 1Ah Reset Value: 8'b 1111_111 Type: Read

Bits	Name	Size	Description
[7:0]	Audio jack detection value	8	Resistance between SBU1 to SBU2

AUDIO JACK DETECTION REG2 VALUE

Address: 1Bh Reset Value: 8'b 1111_111 Type: Read

ĺ	Bits	Name	Size	Description
ĺ	[7:0]	Audio jack detection value	8	Resistance between SBU2 to SBU1

MIC DETECTION THRESHOLD DATA0

Address: 1Ch Reset Value: 8'b 0010_0000 Type: Read/Write

Bits	Name	Size	Description
[7:0]	MIC detection threshold DATA0	8	MIC detection threshold DATA0 0010_0000: 300 mV

MIC DETECTION THRESHOLD DATA1

Address: 1Dh Reset Value: 8'b 1111_111 Type: Read/Write

Bits	Name	Size	Description
[7:0]	MIC detection threshold DATA1	8	MIC detection threshold DATA1 1111_111: 2.4 V

I2C RESET

Address: 1Eh Reset Value: 8'b 0000_0000 Type: W/C

Bits	Name	Size	Description
[7:1]	Reserved	7	Reserved
0	I2C reset	1	0: default 1: I ² C reset

CURRENT SOURCE SETTING Address: 1Fh

Reset Value: 8'b 0000_0111 Type: Write

Bits	Name	Size	Description
[7:4]	Reserved	4	Reserved
[3:0]	Current Source Setting	4	1111: 1500 μA 0111: 700 μA 0001: 100 μA 0000: invalid

APPLICATION INFORMATION

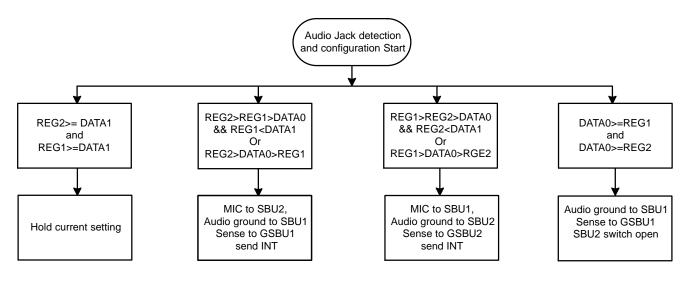
Over-Voltage Protection

FSA4480 features over-voltage protection (OVP) on receptacle side pins that switches off the internal signal routing path if the input voltage exceeds the OVP threshold.

If OVP is occurred, interrupt signal can be send by INT signal and FLAG data will provide information that which pin had OVP event.

Headset Detection

FSA4480 integrates headset unplug detection function by detecting the CC_IN voltage. The function is always active when device is enabling. DET will be high when CC_IN is low (CC_IN < 1.2 V). When CC_IN = High (CC_IN > 1.5 V), DET will be released to low.

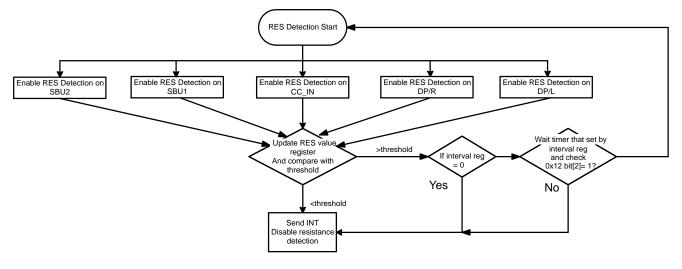

	Device Disable Device Enable		
CC_IN < V _{TH_L} = 1.2 V	DET = 0	DET = 1	
$CC_IN > V_{TH_H} = 1.5 V$	DET = 0	DET = 0	

MIC Switch Auto-off Function

The function is active during control bit 0x12h bit[2] = 1. When CC_IN is high (CC_IN > 1.5 V) and L,R, Audio ground switches are under on status, MIC switch will be off and receptacle side pin will be connected to ground for 50 μ S first. Then it shows high–Z status under MIC switch is set on status.

Audio Ground Detection and Configuration

The function is active when control bit 0x12h bit[0] = 1 and R, L AGND switches are set to be on status. For type–C interface analog headset, the audio ground could be SBU1 pin or SBU2 pin. The function will provide autonomous detection and configuration to route MIC and audio ground signal accordingly.



During detection and configuration, the R, L, Sense, MIC and Audio ground switch will be off. After detection and configuration, R and L switches will turn on according to switch configuration and timing setting. MIC, Sense and Audio ground will turn on according to detection results and timing control setting.

Resistance Detection

The function is active during control bit 0x12h bit[1] = 1. It will monitor the resistance between receptacle side pins and ground. During resistance detection, the switch which is monitored will be off. The detection result will be saved in the resistance flag register. The measurement could be from 1 k Ω to 2.56 M Ω which is controlled by internal register. The detection interval can be set at 100 ms, 1 s or 10 s by register 0x16h.

Manual Switch Control

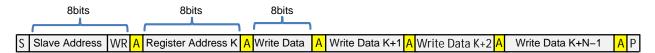
The function is active during control bit 0x12h bit[4] = 1 and 0x04h = FF. It will provide manual control for device.

MANUAL SWITCH CONTROL

(The function is active during control bit 0x12h bit[4] = 1 and 0x04h = FF. It will provide manual control for device. During this configuration, ADDR and INT pins will be set as logic control input.)

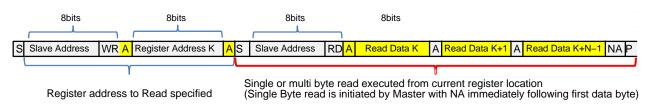
Power	ENN	ADDR	INT	SENSE Switch	Headset Detection	USB Switch	Audio Switch	MIC/ Audio GND Switch	SBU by Pass Switch
OFF	Х	Х	Х	OFF	OFF	OFF	OFF	OFF	OFF
ON	Н	Х	Х	OFF	OFF	OFF	OFF	OFF	OFF
ON	L	0	0	OFF	OFF	ON: DP_R to DP DN_L to DN	OFF	OFF	ON: SBU1 to SBU1_H SBU2 to SBU2_H
ON	L	0	1	OFF	OFF	ON: DP_R to DP DN_L to DN	OFF	OFF	ON: SBU1 to SBU2_H SBU2 to SBU1_H
		1 SBU15	5 В	U	1 .	9 0 7	1	r e	f

During this configuration, ADDR and INT pins will be set as logic control input.


Т

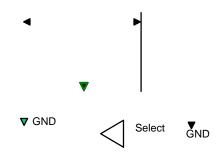
I²C INTERFACE

The FSA4480 includes a full I²C slave controller. The I²C slave fully complies with the I²C specification version 2.1


requirements. This block is designed for fast mode, 400 kHz, signals.

Examples of an I²C write and read sequence are shown in below figures respectively.

NOTE: Single Byte read is initiated by Master with P immediately following first data byte.


Figure 6. I²C Write Example

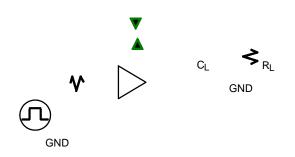

NOTE: If Register is not specified Master will begin read from current register. In this case only sequence showing in Red bracket is needed

Figure 7. I²C Read Example

TEST DIAGRAMS

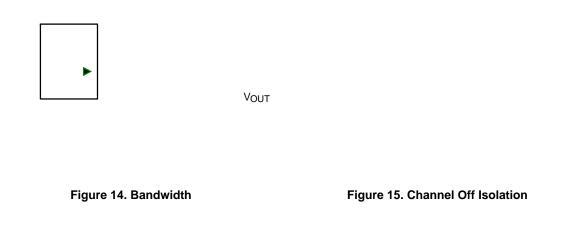
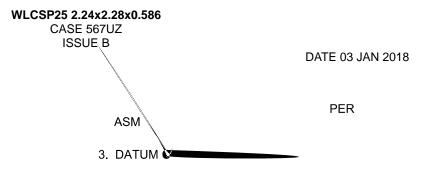



Figure 16. Adjacent Channel Crosstalk

Figure 17. Channel Off Capacitance

Figure 18. Channel On Capacitance

Figure 19. Total Harmonic Distortion (THD + N)

onsemi, , and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or incruit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi