

Figure 1. Pin Configuration

Table 1. PIN DESC

Pin No.	Pin Number	Pin Description
1	TEMP 1	NTC Thermistor Terminal 1
2	TEMP 2	NTC Thermistor Terminal 2
3	PHASE 3 SENSE	Source of Q3 and Drain of Q6
4	GATE 3	Gate of Q3, high side Phase 3 MOSFET
5	GATE 6	Gate of Q6, low side Phase 3 MOSFET
6	PHASE 2 SENSE	Source of Q2 and Drain of Q5
7	GATE 2	Gate of Q2, high side Phase 2 MOSFET
8	GATE 5	Gate of Q5, low side Phase 2 MOSFET
9	PHASE 1 SENSE	Source of Q1 and Drain of Q4
10	GATE 1	Gate of Q1, high side Phase 1 MOSFET
11	VBAT SENSE	Sense pin for battery voltage and Drain of high side MOSFETs
12	GATE 4	Gate of Q4, low side Phase 1 MOSFET
13	SHUNT P	Positive CSR sense pin and source connection for low side MOSFETs
14	SHUNT N	Negative CSR sense pin and sense pin for battery return
15	VBAT	Battery voltage power lead
16	GND	Battery return power lead
17	PHASE 1	Phase 1 power lead
18	PHASE 2	Phase 2 power lead
19	PHASE 3	Phase 3 power lead

Figure 2. Internal Equivalent Circuit

Flammability Information

All materials present in the power module meet UL flammability rating class 94V–0 or higher.

Solder

Solder used is a lead free SnAgCu alloy.

Compliance to RoHS

The Power Module is 100% lead free and RoHS compliant with the 2000/53/C directive.

ABSOLUTE MAXIMUM RATINGS ($T_C = 25^{\circ}C$, Unless otherwise specified)

Symbol	Parameter	FTCO3V85A1	Unit
V _{DS} (Q1~Q6)	Drain to Source Voltage	80	V
V _{GS} (Q1~Q6)	Q1~Q6) Gate to Source Voltage		V
I _D (high side)	Drain Current Continuous (T _C = 25°C, T _J = 175°C, V _{GS} = 10 V) (Note 1)	125	А
I _D (low side)	Drain Current Continuous (T _C = 25°C, T _J = 175°C, V _{GS} = 10 V) (Note 1)	160	А
E _{AS} (Q1~Q3)	Single Pulse Avalanche Energy (Note 2)	190	mJ
E _{AS} (Q4~Q6)	Single Pulse Avalanche Energy (Note 2)	324	mJ
P _D (high side)	Power dissipation (T _C = 25°C, T _J = 175°C)	115	W
P _D (low side)	Power dissipation (T _C = 25°C, T _J = 175°C)	135	W
TJ	Maximum Junction Temperature	175	°C
T _{STG}	Storage Temperature	125	°C

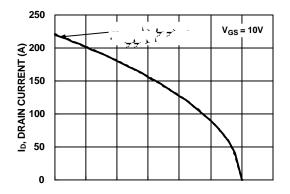
THERMAL RESISTANCE

Symbol	Parameter	Min.	Тур.	Max.	Unit
	Q1 Thermal Resistance J C		1.0	1.3	°C/W
Rthjc Thermal Resistance	Q2 Thermal Resistance J C		1.0	1.3	°C/W
Junction to case, Single	Q3 Thermal Resistance J C		1.0	1.3	°C/W
FET, (Note 3)	Q4 Thermal Resistance J C		0.8	1.1	°C/W
	Q5 Thermal Resistance J C		0.8	1.1	°C/W
	Q6 Thermal Resistance J C		0.8	1.1	°C/W
T _J	Maximum Junction Temperature			175	°C
T _S	Operating Sink Temperature	40		120	°C
Тѕтс	Storage Temperature	40		125	°C

^{1.} Max value not to exceed Tj=175°C based on max limitation of Rthjc thermal limitation and Rdson. Defined by design, not subject production testing.

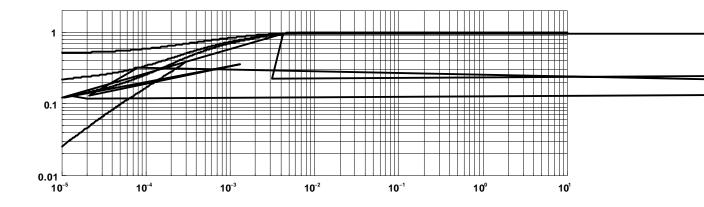
2. Defined by design, not subject production

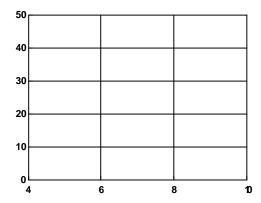
	Min.	Тур.	Max.	Unit
μΑ	80			V
tage	20		20	V
Г _Ј = 25°С	2	3	4	V
= 25°C			1	V


DYNAMIC CHARACTERISTIC

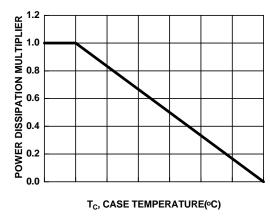
Symbol	Parameter	Min	Test Conditions	Min.	Тур.	Max.	Unit	
C _{iss}	Input Capacitance	$V_{DS} = 40 \text{ V},$ f = 1 MH _Z 1						

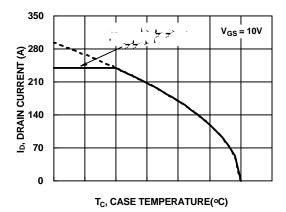
TYPICAL CHARACTERISTICS

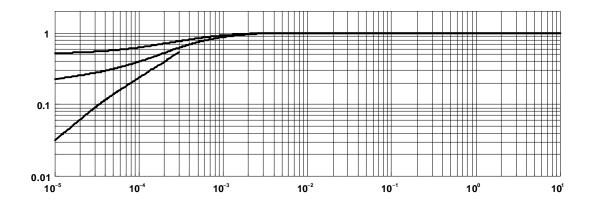

(The dynamic, switching characteristics and Graphs are in reference to the FDBL86366_F085 (TOLL) Datasheet (High side MOSFET)


T_C, CASE TEMPERATURE(°C)

T_C, CASE TEMPERATURE(°C)

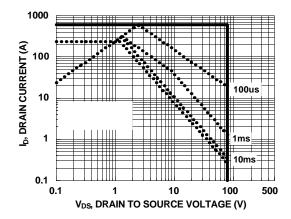

TYPICAL CHARACTERISTICS

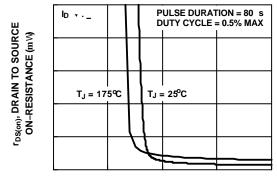

(The dynamic, switching characteristics and Graphs are in reference to the FDBL86366_F085 (TOLL) Datasheet (High side MOSFET) (Continued)

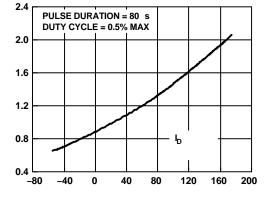


TYPICAL CHARACTERISTICS

(The dynamic, switching characteristics and Graphs are in reference to the FDBL86363_F085 (TOLL) Datasheet (Low side MOSFET) (Continued)




TYPICAL CHARACTERISTICS


(The dynamic, switching characteristics and Graphs are in reference to the FDBL86363_F085 (TOLL) Datasheet (Low side MOSFET) (Continued)

TYPICAL PERFORMANCE CHARACTERISTICS

(The dynamic, switching characteristics and Graphs are in reference to the FDBL86363_F085 (TOLL) Datasheet (Low side MOSFET) (Continued)

V_{GS}, GATE TO SOURCE VOLTAGE (V)

Table 2. MECHANICAL CHARACTERISTICS AND RATINGS

		Limits		Units	
Parameter	Condition	Min.	Тур.	Max.	
Device Flatness	Note Fig. 15	0			

19LD, APM, PDD STD (APM19-CBC) MEBANI&L &S @37.-53007

