, _____

Figure 1. 32-Lead LQFP Pinout (Top View)

Figure 1. 32-Lead QFN (Top View)

Table 1. PIN DESCRIPTION

Pin	Name	I/O	Default State	Description
23, 25, 26, 27, 29, 30, 31, 32, 1, 2	D[0:9]	LVCMOS, LVTTL, ECL Input	Low	Single–Ended Parallel Data Inputs [0:9]. Internal 75 $k\Omega$ to $V_{EE}.$ (Note 1)
3	D[10]	LVCMOS, LVTTL, ECL Input	Low	Single–Ended CASCADE/CASCADE Control Input. Internal 75 k Ω to V_{EE}. (Note 1)
4	IN	LVPECL, LVDS	Low	Noninverted Differential Input. Internal 75 k Ω to $V_{\mbox{\scriptsize EE}}.$
5	ĪN	LVPECL, LVDS	High	Inverted Differential Input. Internal 75 k Ω to V_{EE} and 36.5 $k\Omega$

ie)

Table 6. THEORETICAL DELAY VALUES

D(9:0) Value	SETMIN	SETMAX	Programmable Delay*		
XXXXXXXXXX	Н	L	0 ps		
000000000	L	L	0 ps		
000000001	L	L			

rameter	Condition 1	Condition 2	Rating	Unit	
ipply	V _{EE} = 0 V		6	V	
upply	$V_{CC} = 0 V$		-6	V	
age Itage	V _{EE} = 0 V V _{CC} = 0 V	V _I V _{CC} V _I V _{EE}	6 -6	V V	
	Continuous Surge		50 100	mA mA	
			0.5	mA	
Range			-40 to +85	С	
ange			-65 to +150	С	
nction-to-Ambient) 0 lfpm 500 lfpm		QFN-32 QFN-32	31 27	C/W C/W	
nction-to-Case) 2S2P Standard Board		QFN-32	12	C/W	
nction-to-Ambient)	tion-to-Ambient) 0 lfpm 500 lfpm		80 55	C/W C/W	
nction-to-Case)	2S2P Standard Board	LQFP-32	12 to 17	C/W	
	<2 to 3 sec @ 260 C		265	С	

e Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality y occur and reliability may be affected.

ERISTICS, PECL (V_{CC} = 3.3 V, V_{EE} = 0 V) (Note 7)

V_{IL}

 V_BB

	–40 C		25 C		85 C						
cteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit	
Current	90	115	170	100	140	170	100	145	170	mA	
lote 8)	2155	2280	2405	2155	2280	2405	2155	2280	2405	mV	
ote 8)	1305	1480	1605	1305	1480	1605	1305	1480	1605	mV	
gle–Ended)	2075 2000 2000		2420 3300 3300	2075 2000 2000		2420 3300 3300	2075 2000 2000		2420 3300 3300	mV	
(Single-Ended)	1305 0 0		1675 800 800	1305 0 0		1675 800 800	1305 0 0		1675 800 800	mV	
e Reference	1775	1875	1975	1775	1875	1975	1775	1875	1975	mV	

Table 9. 100EP DC CHARACTERISTICS, NECL

Table 10. AC CHARACTERISTICS (V _{CC} =	$= 0 \text{ V}; \text{ V}_{\text{EE}} = -3.0 \text{ V} \text{ to } -3.6 \text{ V} \text{ or}$	V_{CC} = 3.0 V to 3.6 V; V_{EE} = 0	V) (Note 14) (continued)
---	---	---	--------------------------

	–40 C	25 C	85 C	

Figure 4. AC Reference Measurement

Cascading Multiple EP195Bs

To increase the programmable range of the EP195B, internal cascade circuitry has been included. This circuitry allows for the cascading of multiple EP195Bs without the need for any external gating. Furthermore, this capability requires only one more address line per added E195B. Obviously, cascading multiple programmable delay chips will result in a larger programmable range: however, this increase is at the expense of a longer minimum delay.

Figure 5 illustrates the interconnect scheme for cascading two EP195Bs. As can be seen, this scheme can easily be

expanded for larger EP195B chains. The D10 input of the EP195B is the CASCADE control pin. With the interconnect scheme of Figure 5 when D10 is asserted, it signals the need for a larger programmable range than is achievable with a single device and switches output pin CASCADE HIGH and pin CASCADE LOW. The A11 address can be added to generate a cascade output for the next EP195B. For a 2 device configuration, A11 is not required.

asserted to signal the need to cascade the delay to the next EP195B device. When D10 is asserted, the SET MIN pin of chip #2 will be deasserted and SET MAX pin asserted resulting in the device delay to be the maximum delay. Table 11 shows the delay time of two EP195B chips in cascade.

To expand this cascading scheme to more devices, one simply needs to connect the D10 pin from the next chip to the address bus and CASCADE outputs to the next chip in the same manner as pictured in Figure 5. The only addition to the logic is the increase of one line to the address bus for cascade control of the second programmable delay chip.

Multi-Channel Deskewing

The most practical application for EP195B is in multiple channel delay matching. Slight differences in impedance and cable length can create large timing skews within a high speed system. To deskew multiple signal channels, each channel can be sent through each EP195B as shown in Figure 7. One signal channel n

| | PITCH

DIMENSION: MILLIMETERS

DOCUMENT NUMBER:	98AON20032D	

LQFP-32, 7x7 CASE 561AB ISSUE O

DATE 19 JUN 200

onsemi, , and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or incruit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi