
onsemi

- . / - ff + . 2

Description

The MC100EPT25 is a Differential ECL to LVTTL translator. This device requires +3.3 V, 3.3 V to 5.2 V, and ground. The small outline 8

,

Table 3. MAXIMUM RATINGS

Symbol	Parameter	Condition 1	Condition 2	Rating	Unit
V _{CC}	Positive Power Supply	GND = 0 V	V _{EE} = -5.0 V	3.8	V
V_{EE}	Negative Power Supply	GND = 0 V	V _{CC} = +3.3 V	-6	V
V _{IN}	Input Voltage	GND = 0 V		0 to V _{EE}	V
I _{BB}	V _{BB} Sink/Source			0.5	mA
T _A	Operating Temperature Range			-40 to +85	С
T _{stg}	Storage Temperature Range			-65 to +150	С
θ_{JA}	Thermal Resistance (Junction-to-Ambient)	0 lfpm 500 lfpm	SOIC-8 NB	190 130	C/W
θ_{JC}	Thermal Resistance (Junction-to-Case)	Standard Board	SOIC-8 NB	41 to 44	C/W
θ_{JA}	Thermal Resistance (Junction-to-Ambient)	0 lfpm 500 lfpm	TSSOP-8	185 140	C/W
θ_{JC}	Thermal Resistance (Junction-to-Case)	Standard Board	TSSOP-8	41 to 44	C/W
θ_{JA}	Thermal Resistance (Junction-to-Ambient)	0 lfpm 500 lfpm	DFN-8	129 84	C/W
T _{sol}	Wave Solder (Pb–Free)	<2 to 3 sec @ 260 C		265	С
θ_{JC}	Thermal Resistance (Junction-to-Case)	(Note 2)	DFN-8	35 to 40	C/W

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

2. JEDEC standard multilayer board – 2S2P (2 signal, 2 power)

Table 4. NECL DC CHARACTERISTICS (V_{CC} = 3.3 V; V_{EE} = -5.5 V to -3.0 V; GND = 0.0 V (Note 3))

			-40 C			25 C			85 C		
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
IEE	Power Supply Current	8.0	16	25	8.0	16	25	8.0	16	25	mA
VIH	Input HIGH Voltage Single-Ended	-1225		-880	-1225		-880	-1225		-880	mV
V _{IL}	Input LOW Voltage Single–Ended	-1945		-1625	-1945		-1625	-1945		-1625	mV
V _{BB}	Output Voltage Reference	-1525	-1425	-1325	-1525	-1425	-1325	-1525	-1425	-1325	mV
VIHCMR	Input HIGH Voltage Common Mode Range (Note 4)	V _{EE} -	+ 2.0	0.0	V _{EE} ·	+ 2.0	0.0	V _{EE} ·	+ 2.0	0.0	V
Чн	Input HIGH Current			150			150			150	μΑ
Ι _{IL}	Input LOW Current	0.5			0.5			0.5			μΑ

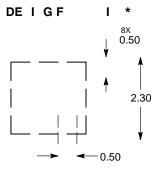
Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm.

3. Input parameters vary 1:1 with GND.

4. V

		-40 C	25 C	85 C		
Symbol	Characteristic	-	-		Unit	

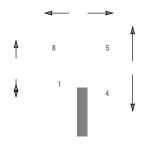

Resource F	Refe	erence of Application Notes
AN1405/D	-	ECL Clock Distribution Techniques
AN1406/D	-	Designing with PECL (ECL at +5.0 V)
AN1503/D	-	ECLinPS [™] I/O SPiCE Modeling Kit
AN1504/D	-	Metastability and the ECLinPS Family
AN1568/D	-	Interfacing Between LVDS and ECL
AN1672/D	-	The ECL Translator Guide
AND8001/D	-	Odd Number Counters Design
AND8002/D	-	Marking and Date Codes
AND8020/D	-	Termination of ECL Logic Devices
AND8066/D	-	Interfacing with ECLinPS
AND8090/D	-	AC Characteristics of ECL Devices

ECLinPS is a trademark of Semiconductor Components Industries, LLC dba "onsemi

DF 82x2, 0.5 CASE 506AA ISSUE F

DATE 04 MAY 2016

1 CA E 4:1



DIMENSIONS: MILLIMETERS

*For additional information on our Pb–Free strategy and soldering details, please download the **m** e Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

DATE 16 FEB 2011

SEATING PLANE

TSSOP 8 3.00x3.00x0.95 CASE 948R-02 ISSUE A

DATE 07 APR 2000

	MILLIN	IETERS	INCHES		
DIM	MIN	MAX	MIN	MAX	
Α	27:0	3.10	0.114	0.122	
В					

onsemi, , and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or incruit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi