

MARKING DIAGRAMS

*For additional marking information, refer to Application Note <u>AND8002/D</u>.

ORDERING INFORMATION

Device	Package	Shipping [†]
MC100LVEL11DG	SOIC-8 (Pb-Free)	98 Units/Tube
MC100LVEL11DR2G	SOIC-8 (Pb-Free)	2500/Tape & Reel
MC100LVEL11DTG	TSSOP-8 (Pb-Free)	
MC100LVEL11DTR2G	TSSOP-8 (Pb-Free)	2500/Tape & Reel
MC100LVEL11MNR4G		1000/Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

MC100LVEL11

MC100LVEL11

Table 4. LVPECL DC CHARACTERISTICS $V_{CC} = 3.3 \text{ V}$; $V_{EE} = 0.0 \text{ V}$ (Note 3)

			-40 C			25 C			95 C		
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
I _{EE}	Power Supply Current		24	28		24	28		25	30	mA
V _{OH}	Output HIGH Voltage (Note 4)	2215	2295	2420	2275	2345	2420	2275	2345	2420	mV
V _{OL}	Output LOW Voltage (Note 4)	1470	1605	1745	1490	1595	1680	1490	1595	1680	mV
V_{IH}	Input HIGH Voltage (Single-Ended)	2135		2420	2135		2420	2135		2420	mV
V _{IL}	Input LOW Voltage (Single-Ended)	1490		1825	1490		1825	1490		1825	mV
VIHCMR	Input HIGH Voltage Common Mode Range (Differential) (Note 8) V _{pp} < 500 mV V _{pp} ≧ 500 mV	1.2		3.1 3.1	1.1		3.1 3.1	1.1 1.3		3.1 3.1	V V
I _{IH}	Input HIGH Current			150			150			150	μΑ

 I_{IL}

MC100LVEL11

Table 6. AC CHARACTERISTICS $V_{CC} = 3.3 \text{ V}; V_{EE} = 0.0 \text{ V} \text{ or } V_{CC} = 0.0 \text{ V}; V_{EE} = -3.3 \text{ V} \text{ (Note 9)}$

			-40 C			25 C			95 C		
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
f _{max}	Maximum Toggle Frequency					1.0					GHz
t _{PLH} t _{PHL}	Propagation Delay to Output	235		385	255	330	405	285		435	ps
t _{SKEW}	Within-Device Skew (Note 10) Device—to–Device (Note 11) Duty Cycle Skew (Note 12)		5 10	20 150 20		5 10	20 150 20		5 10	20 150 20	ps
t _{JITTER}	Random Clock Jitter (RMS)					0.6					ps
V_{PP}	Input Swing (Note 13)	200		1000	200		1000	200		1000	mV
t _r t _f	Output Rise/Fall Times Q (20% – 80%)	120		320	120	220	320	120		320	ps

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm.

- 9. V_{EE} can vary 0.3 V. 10. Within-device skew defined as identical transitions on similar paths through a device.

- 11. Device-to-device skew for identical transitions at identical V_{CC} levels.
 12. Duty cycle skew is the difference between a t_{PLH} and t_{PHL} propagation delay through a device.
 13. V_{PP}(min) is the minimum input swing for which AC parameters guaranteed. The device will function properly with input swings below 200 mV, however, AC delays may move outside of the specified range. The device has a DC gain of 40.

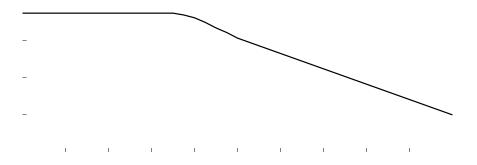
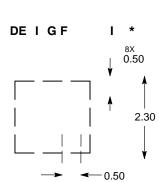
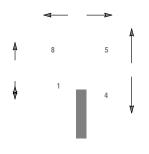
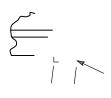



Figure 2. Output Swing versus Frequency

1 CA E 4:1 DATE 04 MAY 2016




DIMENSIONS: MILLIMETERS

^{*}For additional information on our Pb–Free strategy and soldering details, please download the m Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

SOIC 8 NB CASE 751-07 ISSUE AK

DATE 16 FEB 2011

SEATING PLANE

TSSOP 8 3.00x3.00x0.95 CASE 948R-02

CASE 948R-02 ISSUE A

DATE 07 APR 2000

	MILLIN	IETERS	INCHES			
DIM	MIN	MAX	MIN	MAX		
Α	2 0	3.10	0.114	0.122		
В						

