Description ## **MARKING DIAGRAM*** A = Assembly Location WL = Wafer Lot YY = Year WW = Work Week G = Pb-Free Package #### **ORDERING INFORMATION** | Device | Package | Shipping [†] | |------------------|-------------------------|-----------------------| | MC100LVEL39DWR2G | SOIC-20 WB
(Pb-Free) | 1000/Tape & Reel | [†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. μ #### **Features** ^{*}For additional marking information, refer to Application Note <u>AND8002/D</u>. # **MC100LVEL39** Warning: All V_{CC} and V_{EE} pins must be externally connected to Power Supply to guarantee proper operation. Figure 1. Pinout: SOIC-20 WB (Top View) Figure 2. Logic Diagram **Table 1. PIN DESCRIPTION** | Column Head | | |--|--| | CLK, CLK Q ₀ , Q ₁ ; Q ₀ , Q ₁ Q ₂ , Q ₃ ; Q ₂ , Q ₃ DIVSELa, DIVSELb EN MR V _{BB} V _{CC} VEE NC | ECL Diff Clock Inputs ECL Diff 2/4 Outputs ECL Diff 4/6 Outputs ECL Frequency Select Inputs ECL Sync Enable ECL Master Reset Reference Voltage Output Positive Supply Negative Supply No Connect | **Table 2. FUNCTION TABLE** | CLK | EN | MR | Function | |-----|----|----|------------| | Z | L | L | Divide | | ZZ | H | L | Hold Q0–3 | | X | X | H | Reset Qo–3 | Z = Low-to-High Transition ZZ = High-to-Low Transition X = Don't Care | DIVSELa | Q ₀ , Q ₁ Outputs | |---------|---| | L
H | Divide by 2
Divide by 4 | | | | | DIVSELb | Q ₂ , Q ₃ Outputs | ## **MC100LVEL39** **Table 3. MAXIMUM RATINGS** | Symbol | Parameter | Condition 1 | Condition 2 | Rating | Unit | |-------------------|--|--|--|-------------------|------| | V _{CC} | PECL Mode Power Supply | V _{EE} = 0 V | | 8 to 0 | V | | V_{EE} | NECL Mode Power Supply | V _{CC} = 0 V | | -8 to 0 | V | | VI | PECL Mode Input Voltage
NECL Mode Input Voltage | V _{EE} = 0 V
V _{CC} = 0 V | $V_{I} \leq V_{CC}$
$V_{I} \geq V_{EE}$ | 6 to 0
-6 to 0 | V | | l _{out} | Output Current | Continuous
Surge | | 50
100 | mA | | I _{BB} | V _{BB} Sink/Source | | | 0.5 | mA | | T _A | Operating Temperature Range | | | -40 to +85 | С | | T _{stg} | Storage Temperature Range | | | -65 to +150 | С | | $\theta_{\sf JA}$ | Thermal Resistance (Junction-to-Ambient) | 0 lfpm
500 lfpm | SOIC-20 WB | 90
60 | C/W | | $\theta_{\sf JC}$ | Thermal Resistance (Junction-to-Case) | Standard Board | SOIC-20 WB | 30 to 35 | C/W | | T _{sol} | Wave Solder (Pb-Free) | < 2 to 3 sec @ 260 C | | 265 | С | Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. Table 4. LVPECL DC CHARACTERISTICS (V $_{CC}$ = 3.3 V; V $_{EE}$ = 0.0 V (Note 1)) | | | | -40 C | | | 25 C | | | 85 C | | | |--------------------|---|------------|-------|------------|------------|------|------------|------------|------|------------|------| | Symbol | Characteristic | Min | Тур | Max | Min | Тур | Max | Min | Тур | Max | Unit | | I _{EE} | Power Supply Current | | 50 | 59 | | 50 | 59 | | 54 | 61 | mA | | V _{OH} | Output HIGH Voltage (Note 2) | 2215 | 2295 | 2420 | 2275 | 2345 | 2420 | 2275 | 2345 | 2420 | mV | | V _{OL} | Output LOW Voltage (Note 2) | 1470 | 1605 | 1745 | 1490 | 1595 | 1680 | 1490 | 1595 | 1680 | mV | | V _{IH} | Input HIGH Voltage (Single-Ended) | 2135 | | 2420 | 2135 | | 2420 | 2135 | | 2420 | mV | | V _{IL} | Input LOW Voltage (Single-Ended) | 1490 | | 1825 | 1490 | | 1825 | 1490 | | 1825 | mV | | V _{BB} | Output Voltage Reference | 1.92 | | 2.04 | 1.92 | | 2.04 | 1.92 | | 2.04 | V | | V _{IHCMR} | Input HIGH Voltage Common Mode
Range (Differential) (Note 6)
V _{PP} < 500 mV
V _{PP} 500 mV | 1.3
1.5 | | 2.9
2.9 | 1.2
1.4 | | 2.9
2.9 | 1.2
1.4 | | 2.9
2.9 | V | | I _{IH} | Input HIGH Current | | | 150 | | | 150 | | | 150 | μΑ | | I _{IL} | Input LOW Current | 0.5 | | | 0.5 | | | 0.5 | | | μΑ | #### MC100LVEL39 Table 5. LVNECL DC CHARACTERISTICS ($V_{CC} = 0.0 \text{ V}$; $V_{EE} = -3.3 \text{ V}$ (Note 4)) | | | -40 C | | | 25 C | | | 85 C | | | | |-----------------|---|--------------|-------|--------------|--------------|-------|--------------|--------------|-------|--------------|------| | Symbol | Characteristic | Min | Тур | Max | Min | Тур | Max | Min | Тур | Max | Unit | | I _{EE} | Power Supply Current | | 50 | 59 | | 50 | 59 | | 54 | 61 | mA | | V _{OH} | Output HIGH Voltage (Note 5) | -1085 | -1005 | -880 | -1025 | -955 | -880 | -1025 | -955 | -880 | mV | | V _{OL} | Output LOW Voltage (Note 5) | -1830 | -1695 | -1555 | -1810 | -1705 | -1620 | -1810 | -1705 | -1620 | mV | | V _{IH} | Input HIGH Voltage (Single-Ended) | -1165 | | -880 | -1165 | | -880 | -1165 | | -880 | mV | | V _{IL} | Input LOW Voltage (Single-Ended) | -1810 | | -1475 | -1810 | | -1475 | -1810 | | -1475 | mV | | V _{BB} | Output Voltage Reference | -1.38 | | -1.26 | -1.38 | | -1.26 | -1.38 | | -1.26 | V | | VIHCMR | Input HIGH Voltage Common Mode
Range (Differential) (Note 6)
V _{PP} < 500 mV
V _{PP} 500 mV | -2.0
-1.8 | | -0.4
-0.4 | -2.1
-1.9 | | -0.4
-0.4 | -2.1
-1.9 | | -0.4
-0.4 | V | | I _{IH} | Input HIGH Current | | | 150 | | | 150 | | | 150 | μΑ | | I _{IL} | Input LOW Current | 0.5 | | | 0.5 | | | 0.5 | | | μΑ | NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. - Input and output parameters vary 1:1 with V_{CC}. V_{EE} can vary 0.3 V. Outputs are terminated through a 50 Ω resistor to V_{CC} 2.0 V. V_{IHCMR} min varies 1:1 with V_{EE}, max varies 1:1 with V_{CC}. The V_{IHCMR} range is referenced to the most positive side of the differential input signal. Normal operation is obtained if the HIGH level falls within the specified range and the peak-to-peak voltage lies between V_{PP}min and 1.0 V. Table 6. AC CHARACTERISTICS ($V_{CC} = 3.3 \text{ V}$; $V_{EE} = 0.0 \text{ V}$ or $V_{CC} = 0.0 \text{ V}$; $V_{EE} = -3.3 \text{ V}$ (Note 7)) | | | -40 C | | 25 C | | | 85 C | | | | | |--------------------------------------|---|-------------------|-----|---------------------|-------------------|-----|---------------------|-------------------|-----|---------------------|------| | Symbol | Characteristic | Min | Тур | Max | Min | Тур | Max | Min | Тур | Max | Unit | | fmax | Maximum Toggle Frequency | 1000 | | | 1000 | | | 1000 | | | MHz | | t _{PLH}
t _{PHL} | Propagation Delayed Output
CLK to Q (Diff)
CLK to Q (S.E.)
MR to Q | 850
850
600 | | 1150
1150
900 | 900
900
610 | | 1200
1200
910 | 950
950
630 | | 1250
1250
930 | ps | | t _{SKEW} | $ \begin{array}{ccc} \text{Within-Device Skew (Note 8)} & Q_0 - Q_3 \\ \text{Part-to-Part} & Q_0 - Q_3 \text{ (Diff)} \end{array} $ | | | 50
200 | | | 50
200 | | | 50
200 | ps | | tJITTER | Random CLOCK Jitter (RMS) @ 1000 MHz | | 2.0 | 3.0 | | 2.0 | 3.0 | | 2.0 | 3.0 | ps | | t _S | Setup Time EN to CLK DIVSEL to CLK | 250
400 | | | 250
400 | | | 250
400 | | | ps | | t _H | Hold Time CLK to EN CLK to Div_Sel | 100
150 | | | 100
150 | | | 100
150 | | | ps | | V _{PP} | Input Swing (Note 9) CLK | 250 | | 1000 | 250 | | 1000 | 250 | | 1000 | mV | | t _{RR} | Reset Recovery Time | | | 100 | | | 100 | | | 100 | ps | | t _{PW} | Minimum Pulse Width
CLK
MR | 500
700 | | | 500
700 | | | 500
700 | | | ps | | t _r , t _f | Output Rise/Fall Times Q (20% – 80%) | 280 | | 550 | 280 | | 550 | 280 | | 550 | ps |