



PIN FUNCTION

CLK, CLK ECL Diff Clock Inputs

### Table 4. MAXIMUM RATINGS

| Symbol           | Parameter                                          | Condition 1                                    | Condition 2                                                       | Rating     | Unit |
|------------------|----------------------------------------------------|------------------------------------------------|-------------------------------------------------------------------|------------|------|
| V <sub>CC</sub>  | PECL Mode Power Supply                             | V <sub>EE</sub> = 0 V                          |                                                                   | 8          | V    |
| V <sub>EE</sub>  | NECL Mode Power Supply                             | $V_{CC} = 0 V$                                 |                                                                   | 8          | V    |
| l <sub>out</sub> | Output Current                                     | Continuous<br>Surge                            |                                                                   | 50<br>100  | mA   |
| VI               | PECL Mode Input Voltage<br>NECL Mode Input Voltage | V <sub>EE</sub> = 0 V<br>V <sub>CC</sub> = 0 V | $\begin{array}{l} V_I \leq V_{CC} \\ V_I \geq V_{EE} \end{array}$ | 6<br>6     | V    |
| I <sub>BB</sub>  | V <sub>BB</sub> Sink/Source                        |                                                |                                                                   | ± 0.5      | mA   |
| T <sub>A</sub>   | Operating Temperature Range                        |                                                |                                                                   | 40 to +85  | °C   |
| T <sub>stg</sub> | Storage Temperature Range                          |                                                |                                                                   | 65 to +150 | °C   |
| $\theta_{JA}$    | Thermal Resistance (Junction-to-Ambient)           | 0 lfpm<br>500 lfpm                             | SOIC 16                                                           | 130<br>75  | °C/W |
| $\theta_{JC}$    | Thermal Resistance (Junction-to-Case)              | Standard Board                                 | SOIC 16                                                           | 33 to 36   | °C/W |
| T <sub>sol</sub> | Wave Solder (Pb-Free)                              | <2 to 3 sec @ 260°C                            |                                                                   | 265        | °C   |

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

| Table 5. 10El | SERIES PECL D | C CHARACTERISTICS | S (V <sub>CC</sub> = 5.0 V; V | <sub>EE</sub> = 0.0 V (Note 1)) |
|---------------|---------------|-------------------|-------------------------------|---------------------------------|
|---------------|---------------|-------------------|-------------------------------|---------------------------------|

|                 |                                                                 |      | -40°C |      | 25°C |      | 85°C |      |      |      |      |
|-----------------|-----------------------------------------------------------------|------|-------|------|------|------|------|------|------|------|------|
| Symbol          | Characteristic                                                  | Min  | Тур   | Max  | Min  | Тур  | Max  | Min  | Тур  | Max  | Unit |
| I <sub>EE</sub> | Power Supply Current                                            |      | 25    | 35   |      | 25   | 35   |      | 25   | 35   | mA   |
| V <sub>OH</sub> | Output HIGH Voltage (Note 2)                                    | 3920 | 4010  | 4110 | 4020 | 4105 | 4190 | 4090 | 4185 | 4280 | mV   |
| V <sub>OL</sub> | Output LOW Voltage (Note 2)                                     | 3050 | 3200  | 3350 | 3050 | 3210 | 3370 | 3050 | 3227 | 3405 | mV   |
| V <sub>IH</sub> | Input HIGH Voltage (Single-Ended)                               | 3770 |       | 4110 | 3870 |      | 4190 | 3940 |      | 4280 | mV   |
| V <sub>IL</sub> | Input LOW Voltage (Single-Ended)                                | 3050 |       | 3500 | 3050 |      | 3520 | 3050 |      | 3555 | mV   |
| V <sub>BB</sub> | Output Voltage Reference                                        | 3.57 |       | 3.7  | 3.65 |      | 3.75 | 3.69 |      | 3.81 | V    |
| VIHCMR          | Input HIGH Voltage Common Mode<br>Range (Differential) (Note 3) | 2.5  |       | 4.6  | 2.5  |      | 4.6  | 2.5  |      | 4.6  | V    |
| I <sub>IH</sub> | Input HIGH Current                                              |      |       | 150  |      |      | 150  |      |      | 150  | μΑ   |
| IIL             | Input LOW Current                                               | 0.5  |       |      | 0.5  |      |      | 0.3  |      |      | μΑ   |

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. 1. Input and output parameters vary 1:1 with V<sub>CC</sub>. V<sub>EE</sub> can vary +0.06 V /  $\,$  0.5 V.

### Table 6. 10EL SERIES NECL DC CHARACTERISTICS (V<sub>CC</sub> = 0 V; V<sub>EE</sub> = 5.0 V (Note 1))

|                 |                                                                 |      | -40°C |      | 25°C |      | 85°C |      |      |      |      |
|-----------------|-----------------------------------------------------------------|------|-------|------|------|------|------|------|------|------|------|
| Symbol          | Characteristic                                                  | Min  | Тур   | Max  | Min  | Тур  | Max  | Min  | Тур  | Max  | Unit |
| I <sub>EE</sub> | Power Supply Current                                            |      | 25    | 35   |      | 25   | 35   |      | 25   | 35   | mA   |
| V <sub>OH</sub> | Output HIGH Voltage (Note 2)                                    | 1080 | 990   | 890  | 980  | 895  | 810  | 910  | 815  | 720  | mV   |
| V <sub>OL</sub> | Output LOW Voltage (Note 2)                                     | 1950 | 1800  | 1650 | 1950 | 1790 | 1630 | 1950 | 1773 | 1595 | mV   |
| VIH             | Input HIGH Voltage (Single-Ended)                               | 1230 |       | 890  | 1130 |      | 810  | 1060 |      | 720  | mV   |
| V <sub>IL</sub> | Input LOW Voltage (Single-Ended)                                | 1950 |       | 1500 | 1950 |      | 1480 | 1950 |      | 1445 | mV   |
| V <sub>BB</sub> | Output Voltage Reference                                        | 1.43 |       | 1.30 | 1.35 |      | 1.25 | 1.31 |      | 1.19 | V    |
| VIHCMR          | Input HIGH Voltage Common Mode<br>Range (Differential) (Note 3) | 2.5  |       | 0.4  | 2.5  |      | 0.4  | 2.5  |      | 0.4  | V    |
| I <sub>IH</sub> | Input HIGH Current                                              |      |       | 150  |      |      | 150  |      |      | 150  | μΑ   |
| IIL             | Input LOW Current                                               | 0.5  |       |      | 0.5  |      |      | 0.3  |      |      | μA   |

NOTE: Device will meet the specifications after thermal equilibrium has be established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm.

Input and output parameters vary 1:1 with V<sub>CC</sub>. V<sub>EE</sub> can vary +0.06 V / 0.5 V.
 Outputs are terminated through a 50 Ω resistor to V<sub>CC</sub> 2.0 V.
 V<sub>IHCMR</sub> min varies 1:1 with V<sub>EE</sub>, V<sub>IHCMR</sub> max varies 1:1 with V<sub>CC</sub>. The V<sub>IHCMR</sub> range is referenced to the most positive side of the differential input signal. Normal operation is obtained if the HIGH level falls within the specified range and the peak-to-peak voltage lies between V<sub>PP</sub>min and 1 V.

### Table 7. 100EL SERIES PECL DC CHARACTERISTICS (V<sub>CC</sub> = 5.0 V; V<sub>EE</sub> = 0.0 V (Note 1))

|                 |                                                                 |      | -40°C |      | 25°C |      | 85°C |      |      |      |      |
|-----------------|-----------------------------------------------------------------|------|-------|------|------|------|------|------|------|------|------|
| Symbol          | Characteristic                                                  | Min  | Тур   | Max  | Min  | Тур  | Max  | Min  | Тур  | Max  | Unit |
| I <sub>EE</sub> | Power Supply Current                                            |      | 25    | 35   |      | 25   | 35   |      | 25   | 38   | mA   |
| V <sub>OH</sub> | Output HIGH Voltage (Note 2)                                    | 3915 | 3995  | 4120 | 3975 | 4045 | 4120 | 3975 | 4050 | 4120 | mV   |
| V <sub>OL</sub> | Output LOW Voltage (Note 2)                                     | 3170 | 3305  | 3445 | 3190 | 3295 | 3380 | 3190 | 3295 | 3380 | mV   |
| V <sub>IH</sub> | Input HIGH Voltage (Single-Ended)                               | 3835 |       | 4120 | 3835 |      | 4120 | 3835 |      | 4120 | mV   |
| V <sub>IL</sub> | Input LOW Voltage (Single-Ended)                                | 3190 |       | 3525 | 3190 |      | 3525 | 3190 |      | 3525 | mV   |
| V <sub>BB</sub> | Output Voltage Reference                                        | 3.62 |       | 3.74 | 3.62 |      | 3.74 | 3.62 |      | 3.74 | V    |
| VIHCMR          | Input HIGH Voltage Common Mode<br>Range (Differential) (Note 3) | 2.5  |       | 4.6  | 2.5  |      | 4.6  | 2.5  |      | 4.6  | V    |
| I <sub>IH</sub> | Input HIGH Current                                              |      |       | 150  |      |      |      |      |      | -    |      |

|                 |                              | -40°C |      | 25°C |      |      | 85°C |      |     |     |      |
|-----------------|------------------------------|-------|------|------|------|------|------|------|-----|-----|------|
| Symbol          | Characteristic               | Min   | Тур  | Max  | Min  | Тур  | Max  | Min  | Тур | Max | Unit |
| I <sub>EE</sub> | Power Supply Current         |       | 25   | 35   |      | 25   | 35   |      | 25  | 38  | mA   |
| V <sub>OH</sub> | Output HIGH Voltage (Note 2) | 1085  | 1005 | 880  | 1025 | 955  | 880  | 1025 | 955 | 880 | mV   |
| V <sub>OL</sub> | Output LOW Voltage (Note 2)  | 1830  | 1695 | 1555 | 1810 | 1705 |      |      |     |     |      |

Table 8. 100EL SERIES NECL DC CHARACTERISTICS ( $V_{CC}$  = 0 V;  $V_{EE}$  = 5.0 V (Note 1))



Figure 2. Typical Termination for Output Driver and Device Evaluation (See Application Note <u>AND8020/D</u> – Termination of ECL Logic Devices.)

Resource Reference of Application Notes

- AN1405/D ECL Clock Distribution Techniques
- AN1406/D Designing with PECL (ECL at +5.0 V)
- AN1503/D ECLinPS<sup>™</sup> I/O SPiCE Modeling Kit
- AN1504/D Metastability and the ECLinPS Family
- AN1568/D



#### SOIC-16 9.90x3.90x1.37 1.27P CASE 751B ISSUE M

DATE 18 OCT 2024

- DIMENSIONS D AND E1 DO NOT INCLUDE MOLD PROTRUSION.
  MAXIMUM MOLD PROTRUSION 0.1<sup>r</sup>

**b** DIMENSION AT MAXIMUM MATE

nm TOTAL IN EXCESS OF THE



<u>top view</u>

#### SOIC-16 9.90x3.90x1.37 1.27P CASE 751B ISSUE M

#### DATE 18 OCT 2024

#### GENERIC MARKING DIAGRAM\*

| 16 | H | - A | H.  | H   | H   | H  | H.  | E |
|----|---|-----|-----|-----|-----|----|-----|---|
|    |   | XX) | (X) | XX  | (X) | XX | (XC | 3 |
|    |   | XXX | (X) | XX) | XX  | XX | (X) | < |
|    | 0 |     | A١  | NĽ  | ΥW  | W  |     |   |
|    | 4 | 1   |     |     |     |    |     | ᆔ |
| 1  | Н | н   | н   | н   | н   | н  | н   | Н |

XXXXX = Specific Device Code

A = Assembly Location

- WL = Wafer Lot
- Y = Year
- WW = Work Week
- G = Pb Free Package

\*This information is generic. Please refer to device data sheet for actual part marking. Pb Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking.



| DOCUMENT NUMBER: | 98ASB42566B              | Electronic versions are uncontrolled except when accessed directly from the Document Repositor<br>Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. |             |  |  |  |
|------------------|--------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--|--|--|
| DESCRIPTION:     | SOIC-16 9.90X3.90X1.37 1 | .27P                                                                                                                                                                              | PAGE 2 OF 2 |  |  |  |
|                  |                          |                                                                                                                                                                                   |             |  |  |  |

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights of others.

onsemi, , and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <a href="http://www.onsemi.com/site/pdf/Patent-Marking.pdf">www.onsemi.com/site/pdf/Patent-Marking.pdf</a>. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or incruit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi