Description

The MC10/100EL34 is a low skew $\div 2, \div 4, \div 8$ clock generation chip designed explicitly for low skew clock generation applications. The internal dividers are synchronous to each other, therefore, the common output edges are all precisely aligned. The V_{BB} pin, an internally generated voltage supply, is available to this device only. For single-ended input conditions, the unused differential input is connected to V_{BB} as a switching reference voltage. V_{BB} may also rebias AC coupled inputs. When used, decouple V_{BB} and V_{CC} via a 0.01 µF capacitor and limit current sourcing or sinking to 0.5 mA. When not used, V_{BB} should be left open.

The common enable (\overline{EN}) is synchronous so that the internal

Table 4. MAXIMUM RATINGS

Symbol	Parameter	Condition 1	Condition 2	Rating	Unit
V _{CC}	PECL Mode Power Supply	$V_{EE} = 0 V$		8	V
V _{EE}	NECL Mode Power Supply	$V_{CC} = 0 V$		-8	V
VI					-

		40°C			25°C			85°C			
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
I_{EE}	Power Supply Current			39			39			42	mA
V _{OH}	Output HIGH Voltage (Note 2)	-1085	-1005	-880	-1025	-955	-880	-1025	-955	-880	mV
V _{OL}	Output LOW Voltage (Note 2)	-1830	-1695	-1555	-1810	-1705	-1620	-1810	-1705	-1620	mV
VIH	Input HIGH Voltage (Single-Ended)	-1165		-880	-1165		-880	-1165		-880	mV
VIL	Input LOW Voltage (Single-Ended)	-1810		-1475	-1810		-1475	-1810		-1475	mV
V_{BB}	Output Voltage Reference	-1.38		-1.26	-1.38		-1.26	-1.38		-1.26	V
VIHCMR	Input HIGH Voltage Common Mode Range (Differential Configuration) (Note 3)	-2.8		-0.4	-2.8		-0.4	-2.8		-0.4	V
I _{IH}	Input HIGH Current			150			150			150	μΑ
۱ _{IL}	Input LOW Current	0.5			0.5			0.5			μΑ

Table 8. 100EL SERIES NECL DC CHARACTERISTICS (V_{CC} = 0 V; V_{EE} = -5.0 V (Note 1))

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm.

Input and output parameters vary 1:1 with V_{CC}. V_{EE} can vary +0.8 V / -0.5 V.
 Outputs are terminated through a 50 Ω resistor to V_{CC} - 2.0 V.
 V_{IHCMR} min varies 1:1 with V_{EE}, V_{IHCMR} max varies 1:1 with V_{CC}. The V_{IHCMR} range is referenced to the most positive side of the differential input signal. Normal operation is obtained if the HIGH level falls within the specified range and the peak-to-peak voltage lies between V_{PP}min and 1 V.

		40°C			25°C			85°C			
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Мах	Unit
fmax	Maximum Toggle Frequency	1.1			1.1			1.1			GHz
t _{PLH} t _{PHL}	Propagation CLK to Q0 Delay to CLK to Q1,2 Output	960 900		1200 1140	960 900		1200 1140	970 910		1210 1150	ps
	MR to Q	750		1060	750		1060	790		1090	
t _{SKEW}	Within-Device Skew (Note 2)		100			100			100		ps
t _{JITTER}	Cycle-to-Cycle Jitter		1.0			1.0			1.0		ps
t _S	Setup Time EN	400			400			400			ps
t _H	Hold Time EN	250			250			250			ps
t _{RR}	Set/Reset Recovery	400	200		400	200		400	200		ps
V _{PP}	Input Swing (Note 3)	150		1000	150		1000	150		1000	mV
t _r t _f	Output Rise/Fall Times Q (20% – 80%)	225		475	225		475	225		475	ps

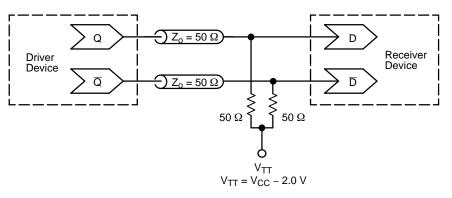
Table 9. AC CHARACTERISTICS ($V_{CC} = 5.0 \text{ V}$; $V_{EE} = 0.0 \text{ V}$ or $V_{CC} = 0.0 \text{ V}$; $V_{EE} = -5.0 \text{ V}$ (Note 1))

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm.

1. 10 Series: V_{EE} can vary +0.06 V / -0.5 V.

100 Series: $\overline{V_{EE}}$ can vary +0.8 V / -0.5 V.

2. Within-device skew is defined as identical transitions on similar paths through a device.


3. VPPmin is minimum input swing for which AC parameters guaranteed. The device has a DC gain of ~40.

There are two distinct functional relationships between the Master Reset and Clock:

CASE 1: If the MR is De-asserted (H L), While the Clock is Still High, the Outputs will Follow the First Ensuing Clock Rising Edge.

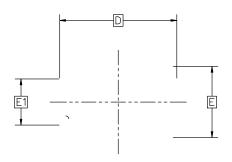
CASE 2: If the MR is De asserted (H Lass State the HCLo); A fies fire (Distion leads Library, shido ned Low, the

The \overline{EN} signal will "freeze" the internal divider flip flops on the first falling edge of CLK after its assertion. The internal divider flip flops will maintain their state during the freeze. The \overline{EN} is deasserted (LOW), and after the next falling edge of CLK, then the internal divider flip flops will "unfreeze" and continue to their next state count with proper phase relationships.

Resource Reference of Application Notes

AN1405/D	-	ECL Clock Distribution Techniques
AN1406/D	-	Designing with PECL (ECL at +5.0 V)
AN1503/D	-	ECLinPS [™] I/O SPiCE Modeling Kit
AN1504/D	-	Metastability and the ECLinPS Family
AN1568/D	-	Interfacing Between LVDS and ECL
AN1672/D	-	The ECL Translator Guide
AND8001/D	-	Odd Number Counters Design
AND8002/D	-	Marking and Date Codes
AND8020/D	-	Termination of ECL Logic Devices
AND8066/D	-	Interfacing with ECLinPS
AND8090/D	-	AC Characteristics of ECL Devices

ECLinPS is a trademark of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries.


SOIC-16 9.90x3.90x1.37 1.27P CASE 751B ISSUE M

DATE 18 OCT 2024

- DIMENSIONS D AND E1 DO NOT INCLUDE MOLD PROTRUSION.
 MAXIMUM MOLD PROTRUSION 0.1^r

b DIMENSION AT MAXIMUM MATE

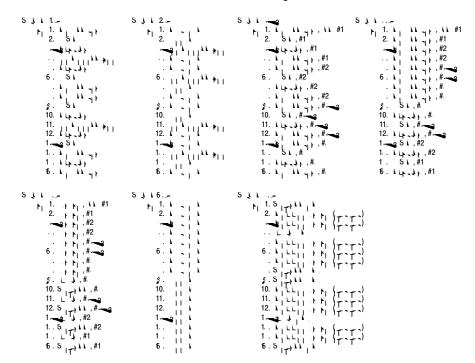
nm TOTAL IN EXCESS OF THE

<u>top view</u>

SOIC-16 9.90x3.90x1.37 1.27P CASE 751B ISSUE M

DATE 18 OCT 2024

GENERIC MARKING DIAGRAM*


16	A	- A	- A	- A	- A	A	A.	E
		XX)	(X)	XX	XX)	XX)	(X)	G
		XXX	XX	XX)	XX)	XX	XX	X
	0		A١	NĽ	ΥW	/W		
1	Ŧ	H	H	H	H	Н	H	Ъ

XXXXX = Specific Device Code

A = Assembly Location

- WL = Wafer Lot
- Y = Year
- WW = Work Week
- G = Pb Free Package

*This information is generic. Please refer to device data sheet for actual part marking. Pb Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking.

DOCUMENT NUMBER:	98ASB42566B Electronic versions are uncontrolled except when accessed directly from the Document Reposito Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.					
DESCRIPTION:	SOIC-16 9.90X3.90X1.37 1	PAGE 2 OF 2				

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights of others.

onsemi, , and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or incruit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi