MARKING DIAGRAMS # cc = 3.0 V - Near Zero Static Supply Current in All Three Logic States (10 μA) Substantially Reduces System Power Requirements - Latchup Performance Exceeds 100 mA - ESD Performance: Human Body Model >2000 V - These Devices are Pb-Free, Halogen Free/BFR Free and are RoHS Compliant #### **MAXIMUM RATINGS** | Symbol | Parameter | Value | Unit | |--------|-----------|-------|------| | \/ | | | | ## DC ELECTRICAL CHARACTERISTICS | | | | | $T_A = -40^{\circ}C \text{ to } +85^{\circ}C$ | | $T_A = -40^{\circ}C$ | c to +125°C | | |-----------------|---------------------------|------------|---------------------|---|------------------------|------------------------|------------------------|------| | Symbol | Parameter | Conditions | V _{CC} (V) | Min | Max | Min | Max | Unit | | V _{IH} | HIGH Level Input Voltage | | 1.65 – 1.95 | 0.65 x V _{CC} | - | 0.65 x V _{CC} | _ | V | | | | | 2.3 – 2.7 | 1.7 | - | 1.7 | _ | | | | | | 3.0 – 3.6 | 2.0 | - | 2.0 | - | | | | | | 4.5 – 5.5 | 0.70 x V _{CC} | - | 0.70 x V _{CC} | _ | | | V _{IL} | LOW Level Input Voltage | | 1.65 – 1.95 | - | 0.35 x V _{CC} | - | 0.35 x V _{CC} | V | | | | | 2.3 – 2.7 | - | 0.7 | - | 0.7 | | | | | | 3.0 – 3.6 | - | 0.8 | - | 0.8 | | | | | | 4.5 – 5.5 | - | 0.30 x V _{CC} | - | 0.30 x V _{CC} | | | V _{OH} | High-Level Output Voltage | VCC | | | | | | | # AC ELECTRICAL CHARACTERISTICS (continued) | | | | | $T_A = -40^{\circ}C \text{ to } +85^{\circ}C$ | | $T_A = -40^{\circ}C \text{ to } +125^{\circ}C$ | | | |------------------|--------------------------------------|----------------|---------------------|---|-----|--|-----|------| | Symbol | Parameter | Test Condition | V _{CC} (V) | Min | Max | Min | Max | Unit | | f _{max} | Clock Pulse Frequency | Waveform 1 | 1.65 to 1.95 | 90 | - | 90 | - | MHz | | | | | 2.3 to 2.7 | 150 | - | 150 | - | | | | | | 2.7 | 150 | _ | 150 | _ | | | | | | 3.0 to 3.6 | 150 | _ | 150 | _ | | | | | | 4.5 to 5.5 | 150 | _ | 150 | _ | | | t _s | Setup Time,
HIGH or LOW Dn to CPn | Waveform 1 | 1.65 to 1.95 | 4.0 | - | 4.0 | - | | #### **DYNAMIC SWITCHING CHARACTERISTICS** | | | | T _A = +25°C | | | | |------------------|-------------------------------------|---|------------------------|--------------|-----|--------| | Symbol | Characteristic | Condition | Min | Тур | Max | Units | | V _{OLP} | Dynamic LOW Peak Voltage (Note 6) | $\begin{array}{c} V_{CC} = 3.3 \text{ V, } C_{L} = 50 \text{ pF, } V_{IH} = 3.3 \text{ V, } V_{IL} = 0 \text{ V} \\ V_{CC} = 2.5 \text{ V, } C_{L} = 30 \text{ pF, } V_{IH} = 2.5 \text{ V, } V_{IL} = 0 \text{ V} \end{array}$ | | 0.8
0.6 | | V
V | | V _{OLV} | Dynamic LOW Valley Voltage (Note 6) | $\begin{array}{c} V_{CC} = 3.3 \text{ V, } C_L = 50 \text{ pF, } V_{IH} = 3.3 \text{ V, } V_{IL} = 0 \text{ V} \\ V_{CC} = 2.5 \text{ V, } C_L = 30 \text{ pF, } V_{IH} = 2.5 \text{ V, } V_{IL} = 0 \text{ V} \end{array}$ | | -0.8
-0.6 | | V
V | ^{6.} Number of outputs defined as "n". Measured with "n–1" outputs switching from HIGH-to-LOW or LOW-to-HIGH. The remaining output is measured in the LOW state. ## **CAPACITIVE CHARACTERISTICS** | Symbol | Parameter | Condition | Typical | Units | |------------------|-------------------------------|--|---------|-------| | C _{IN} | Input Capacitance | $V_{CC} = 3.3 \text{ V}, V_I = 0 \text{ V or } V_{CC}$ | 7 | pF | | C _{OUT} | Output Capacitance | $V_{CC} = 3.3 \text{ V}, V_I = 0 \text{ V or } V_{CC}$ | 8 | pF | | C _{PD} | Power Dissipation Capacitance | 10 MHz, V_{CC} = 3.3 V, V_{I} = 0 V or V_{CC} | 25 | pF | SOIC 14 NB CASE 751A-03 **ISSUE L** #### **DATE 03 FEB 2016** - NOTES: 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. 2. CONTROLLING DIMENSION: MILLIMETERS. 3. DIMENSION & DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE PROTRUSION SHALL BE 0.13 TOTAL IN EXCESS OF AT MAXIMUM MATERIAL CONDITION. 4. DIMENSIONS D AND E DO NOT INCLUDE MOLD PROTRUSIONS. 5. MAXIMUM MOLD PROTRUSION 0.15 PER SIDE. - SIDE. #### **GENERIC MARKING DIAGRAM*** XXXXX = Specific Device Code Α = Assembly Location WL= Wafer Lot Υ = Year WW = Work Week G = Pb-Free Package **STYLES ON PAGE 2** #### SOIC 14 CASE 751A-03 ISSUE L DATE 03 FEB 2016 STYLE 7: PIN 1. ANODE/CATHODE 2. COMMON ANODE 3. COMMON CATHODE 4. ANODE/CATHODE 5. ANODE/CATHODE