

9 D- p L 3- 9 p

With 5 V-Tolerant Inputs

The MC74LVX573 is an advanced high speed CMOS octal latch with 3 state outputs. The inputs tolerate voltages up to 7.0 V, allowing the interface of 5.0 V systems to 3.0 V systems.

This 8 bit D type latch is controlled by a latch enable input and an output enable input. When the output enable input is high, the eight outputs are in a high impedance state.

Features

High Speed: $t_{PD} = 6.4 \text{ ns}$ (Typ) at $V_{CC} = 3.3 \text{ V}$

Low Power Dissipation: $I_{CC} = 4 \mu A$ (Max) at $T_A = 25 C$

Power Down Protection Provided on Inputs

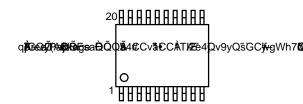
Balanced Propagation Delays

Low Noise: $V_{OLP} = 0.8 \text{ V (Max)}$

Pin and Function Compatible with Other Standard Logic Families

Latchup Performance Exceeds 300 mA

ESD Performance: Human Body Model > 2000 V;


Machine Model > 200 V

These Devices are Pb Free and are RoHS Compliant

MARKING DIAGRAMS

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 5 of this data sheet.

MC74LVX573

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Min	Max	Unit
V _{CC}	DC Supply Voltage	2.0	3.6	V
V _{in}	DC Input Voltage	0	5.5	V
V _{out}	DC Output Voltage	0	V _{CC}	V
T _A	Operating Temperature, All Package Types	-40	+85	С
Δt/ΔV	Input Rise and Fall Time	0	100	ns/V

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

DC ELECTRICAL CHARACTERISTICS

	Parameter	Test Conditions	V _{CC}	T _A = 25 C		T _A = -40 to 85 C			
Symbol			V	Min	Тур	Max	Min	Max	Unit
V _{IH}	High-Level Input Voltage	0 C 8B @ €\$FY%\$ % \$	3.0 3.6	1.5 2.0 2.4			1.5 2.0 2.4		V
V _{IL}	Low-Level Input Voltage		2.0 3.0 3.6			0.5 0.8 0.8		0.5 0.8 0.8	V
V _{OH}	High-Level Output Voltage (V _{in} = V _{IH} or V _{IL})	$I_{OH} = -50 \ \mu A$ $I_{OH} = -50 \ \mu A$ $I_{OH} = -4 \ mA$	2.0 3.0 3.0	1.9 2.9 2.58	2.0 3.0		1.9 2.9 2.48		V
V _{OL}	Low-Level Output Voltage (V _{in} = V _{IH} or V _{IL})	$I_{OL} = 50 \mu A$ $I_{OL} = 50 \mu A$ $I_{OL} = 4 \text{ mA}$	2.0 3.0 3.0		0.0 0.0	0.1 0.1 0.36		0.1 0.1 0.44	V
l _{in}	Input Leakage Current	V _{in} = 5.5 V or GND	3.6			0.1		1.0	μΑ
I _{OZ}	Maximum 3-State Leakage Current	$V_{in} = V_{IL} \text{ or } V_{IH}$ $V_{out} = V_{CC} \text{ or GND}$	3.6			0.2 5		2.5	μА
I _{CC}	Quiescent Supply Current	V _{in} = V _{CC} or GND	3.6						

MC74LVX573

CAPACITIVE CHARACTERISTICS

		T _A = 25 C		T _A = -40 to 85 C			
Symbol	Parameter	Min	Тур	Max	Min	Max	Unit
C _{in}	Input Capacitance		4	10		10	pF
C _{out}	Maximum 3–State Output Capacitance		6				pF
C _{PD}	Power Dissipation Capacitance (Note 2)		29				pF

^{2.} C_{PD} is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load. Average operating current can be obtained by the equation: I_{CC(OPR)} = C_{PD} • V_{CC} • f_{in} + I_{CC}/8 (per latch). C_{PD} is used to determine the no–load dynamic power consumption; P_D = C_{PD} • V_{CC}² • f_{in} + I_{CC} • V_{CC}.

NOISE CHARACTERISTICS (Input t_r = t_f = 3.0 ns, C_L = 50 pF, V_{CC} = 3.3 V, Measured in SOIC Package)

		T _A = 25 C		
Symbol	Characteristic	Тур	Max	Unit
V _{OLP}	Quiet Output Maximum Dynamic V _{OL}	0.5	0.8	V
V _{OLV}	Quiet Output Minimum Dynamic V _{OL}	-0.5	-0.8	V
V _{IHD}	Minimum High Level Dynamic Input Voltage		2.0	V
V _{ILD}	Maximum Low Level Dynamic Input Voltage			

MC74LVX573

SWITCHING WAVEFORMS

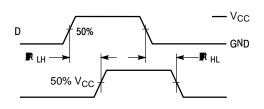


Figure 2.

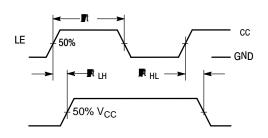


Figure 3.

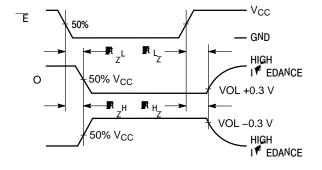
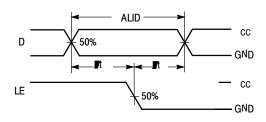
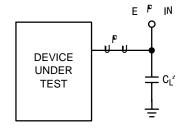
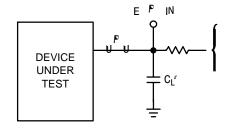
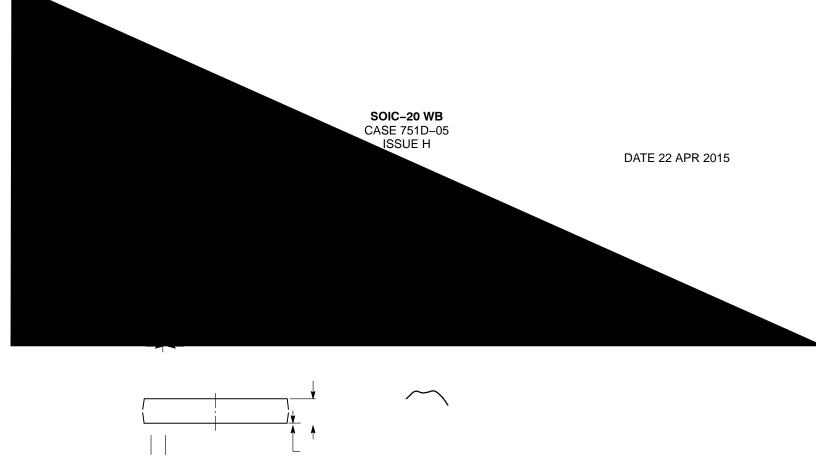


Figure 4.


Figure 5.

*Includes all probe and jig capacitance

*Includes all probe and jig capacitance

TSSOP-20 WB CASE 948E ISSUE D

DATE 17 FEB 2016

