8-Bit Shift Register with Output Register

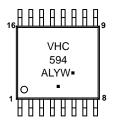
MC74VHC594

The MC74VHC594 is an 8-bit shift register designed for 2.0 V to 5.5 V V_{CC} operation. The device contain an 8-bit serial-in, parallel-out shift register that feeds an 8-bit D-type storage register. Separate clocks (RCLK, SRCLK) and direct overriding clear (\overline{RCLR} , \overline{SRCLR}) inputs are provided on the shift and storage registers. A serial output (Q_H ') is provided for cascading purposes.

The shift-register (SRCLK) and storage-register (RCLK) clocks are positive-edge triggered. If the clocks are tied together, the shift register always is one clock pulse ahead of the storage register.

Features

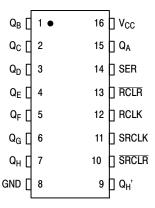
- 2.0 V to 5.5 V V_{CC} Operation
- High Speed: $f_{max} = 185 \text{ MHz}$ (Typ) at $V_{CC} = 5 \text{ V}$
- Low Power Dissipation: $I_{CC} = 4 \mu A$ (Max) at $T_A = 25^{\circ}C$
- High Noise Immunity: $V_{NIH} = V_{NIL} = 28\% \ V_{CC}$
- Power Down Protection Provided on Inputs
- Balanced Propagation Delays
- Low Noise: $V_{OLP} = 1.0 \text{ V (Max)}$
- NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant



www.onsemi.com

MARKING DIAGRAM

TSSOP-16 DT SUFFIX CASE 948F



A = Assembly Location

WL = Wafer Lot Y = Year W, WW = Work Week G or ■ = Pb-Free Package

(Note: Microdot may be in either location)

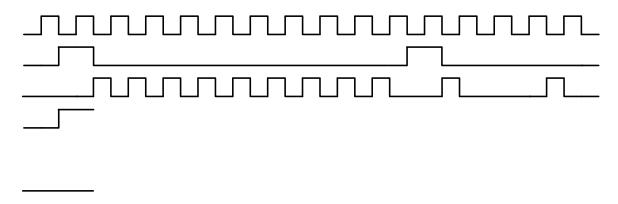
PIN ASSIGNMENT

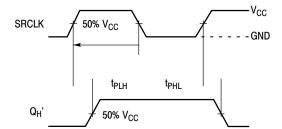
ORDERING INFORMATION

Device	Package	Shipping [†]
MC74VHC594DTR2G	TSSOP-16 (Pb-Free)	2500 Tape & Reel
NLV74VHC594DTR2G*	TSSOP-16 (Pb-Free)	2500 Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

^{*}NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable




Figure 2. Timing Diagram

MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V _{CC}	DC Supply Voltage	-0.5 to +6.5	V
V_{IN}	DC Input Voltage	-0.5 to +6.5	V
V _O	.		

AC ELECTRICAL CHARACTERISTICS (Input $t_{\text{f}} = t_{\text{f}} = 3.0 \text{ ns}$, Figures 3 to 8)

Symbol Parameter	Conditions	V _{CC} (V)	T _A = 25°C		T _A = ≤ 85°C		T _A = ≤ 125°C			
			Min	Тур	Max	Min	Max	Min	Max	Unit
f _{max} Maximum Clock Frequency (50% Duty Cycle)		3.0 to 3.6	80	150		70		70		MHz
		4.5 to 5.5	135	185		115		115		
t _{PLH} , Propagation Delay, SRCLK to Q _H '	$C_L = 15pF$ $C_L = 50pF$	3.0 to 3.6		8.8 11.3	13.0 16.5	1.0 1.0	15.0 18.5	1.0 1.0	15.0 18.5	ns
	$C_L = 15pF$ $C_L = 50pF$	4.5 to 5.5		6.2 7.7	8.2 10.2	1.0 1.0	9.4 11.4	1.0 1.0	9.4 11.4	
Propagation Delay, RCLK to Q _A –Q _H	$C_L = 15pF$ $C_L = 50pF$	3.0 to 3.6		7.7 10.2					•	
	Maximum Clock Frequency (50% Duty Cycle) Propagation Delay, SRCLK to QH' Propagation Delay, RCLK to	$\begin{tabular}{lll} Maximum Clock \\ Frequency (50% \\ Duty Cycle) \\ \hline Propagation \\ Delay, SRCLK to \\ Q_{H}{}' \\ \hline \hline \\ C_L = 15pF \\ C_L = 50pF \\ \hline \\ C_L = 50pF \\ \hline \\ Propagation \\ Delay, RCLK to \\ \hline \\ C_L = 15pF \\ C_L = 50pF \\ \hline \\ C_L = 50pF \\ C_L = 50pF \\ \hline \\ C_L = 50pF \\ \hline \\ C_L = 50pF \\ \hline \\ C_L = 50pF \\ C_L = 50pF \\ \hline \\ C_L = 50pF \\ C_L = $		$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						

TSSOP-16 WB CASE 948F ISSUE B

DATE 19 OCT 2006

SCALE 2:1

