

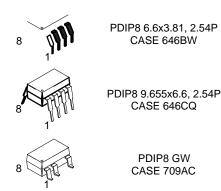
AC Line Monitor Logic-Out Device

MID400M

Description

The MID400M is an optically isolated AC liniteo ïlogic interface device. It ispackaged in an Bread plastic DIP. The AC line voltage is monitored by two backto ïback GaAs LED diodes in series with an external resistor. A high gain detector circuit senses the LED current and drives the output gatter a logiclow condition.

The MID400M has been designed solely for the use as an AC line monitor. It is recommended for use in any ACiDC control application where excellent optical isolation, solid state reliability, TTL compatibility, small size, low power, and low frequency operations are required.


Features

- € Direct Operation from any Line Voltage with the Use of an External V Resistor
- € Externally Adjustable Time Delay
- € Externally Adjustable AC Voltage Sensing Level
- € Logic Level Compatibility
- \in Safety and Regulatory Approvals:
 - UL1577, 5,000 VAG_{MS} for 1 Minute

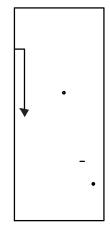
DIN ïEN/IEC60747i5 ï5, 890 V Peak Working Insulation Voltage

Applications

- € Monitoring of the AC/DC "Lineïdown" Condition
- € "Closedïloop" Interface between Electromechanical Elements such as Solenoids, Relay Contacts, Small Motors, and Microprocessors
- € Time Delay Isolation Switch

MARKING DIAGRAM

MID400 = Specific Device Code


ΧХ

YΥ

В

- = DIN EN/IEC60747 ï5 ï5 Option (only appears on component ordered with this option)
- = Two ïDigit Year Code, e.g., "06"
- = Digit Work Week, Ranging from "01" to "53"
- = Assembly Package Code

FUNCTIONAL SCHEMATIC

ORDERING INFORMATION See detailed ordering and shipping information on page 10 of this data sheet.

SAFETY AND INSULATION RATINGS (As per DIN EN/IEC 60747 ï5 ï5, this optocoupler is suitable for "safe electrical insulation" only within the safety limit data. Compliance with the safety ratings shall be ensured by means of protective circuits.)

Parameter		Characteristics
Installation Classifications per DIN VDE 0110/1.89 Table 1, For Rated Mains Voltage	<150 V _{RMS}	I–IV
	<300 V _{RMS}	I–IV
	<450 V _{RMS}	I–III
	<600 V _{RMS}	I–III
Climatic Classification		40/100/21
Pollution Degree (DIN VDE 0110/1.89)		2
Comparative Tracking Index		175

Symbol	Parameter	Value	Unit
V _{PR}	Input ïto ïOutput Test Voltage, Method A, V _{IORM} x 1.6 = V _{PR} , Type and Sample Test with t_m = 10 s, Partial Discharge < 5 pC	1,335	V _{peak}
	Input ïto ïOutput Test Voltage, Method B, V _{IORM} x 1.875 = V _{PR} , 100% Production Test1,	335	

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
T _{STG}	Storage Temperature	ï55 to +125	°C
T _{OPR}	Operating Temperature	ï40 to +85	°C
Τ _J	Junction Temperature	ï55 to +100	°C
T _{SOL}	Lead Solder Temperature	260 for 10 seconds	°C
PD	Total Device Power Dissipation @ T _A = 25°C	115	mW
	Derate Above 70°C	4	mW/°C

EMILLER

RMS Current	25	mA

ELECTRICAL CHARACTERISTICS (0°C to 70°C Free Air Temperature unless otherwise specified)

Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit
INDIVIDUAL COMPONENT CHARACTERISTICS						
EMITTER						

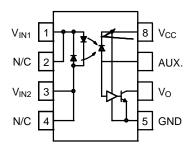
EMITTER V_F

APPLICATION INFORMATION

The input of the MID400M consists of two baites iback LED diodes which will accept and convert alternating currents into light energy. An integrated photo diodeïdetector amplifier forms the output network. Optical couplingbetween input and output provides 2500 VAVs voltageisolation. A very high current transfer ratio (defined as the ratio of the DC output current and the DC input current) is achieved through the use of high gain amplifier. The detector amplifier circuitry operates from a 5 V DC supply and drives an open collector transistor output. The switching times are intentionally designed to be slow in order to enable the MID400M, when used as an AC line monitor, to respond only to changes in input voltage exceeding many milliseconds. The short period of time duringzeroïcrossing which occurs once every half cycle of the power line is completely ignored. To operate the MID400M, always add a resistor, INR in series with the input (as shown in figure 2) to limit the current to the required value. The value of the resistor can be determined by the following equation:

$$R_{IN} = \frac{V_{IN} - V_F}{I_{IN}}$$
 (eq. 1)

Where,


V_{IN} (RMS) is the input voltage.

V_F is the forward voltage drop across the LED.

 I_{IN} (RMS) is the desired input current required to sustain a logic "O" on the output.

Pin Number	Pin Name	Description
1, 3	V _{IN1} , V _{IN2}	Input terminals
2, 4	N/C	No Connect
8	V _{CC}	Supply voltage, output circuit.
7	AUX	Auxiliary terminal. Programmable capacitor input to adjust AC voltage sensing level and time delay.
6	Vo	Output terminal; open collector.
5	GND	Circuit ground potential.

SCHEMATIC DIAGRAM

I_{OL}

Low-Level Output Current

The current flowing into an output with input conditions appliedaccording to the product specification will establish low ïlevel atthe output.

I_{CCL}

Supply Current, Output LOW

The current flowing into the \bigvee_C supply terminal of a circuit when the output is at a low we voltage.

ICCH

Supply Current, Output HIGH

The current flowing into the & supply terminal of a circuit when the output is at a highevel voltage.

Dynamic Characteristics

t_{ON}

Turn-On Time

The time between the specified reference points on the input and the output voltage waveforms with the output changing from the defined highoLu

REFLOW PROFILE

ORDERING INFORMATION

Part Number	Package	Shipping [†]
MID400M	DIP 8 ïPin (Pb ïFree)	50 / Tube
MID400SM	SMT 8 ïPin (Lead Bend) (Pb ïFree)	50 / Tube
MID400SDM	SMT 8 ïPin (Lead Bend) (Pb ïFree)	1,000 / Tape and Reel
MID400VM	DIP 8 ïPin, DIN EN/IEC 60747 ï5 ï5 Option (Pb ïFree)	50 / Tube
MID400SVM	SMT 8 ïPin (Lead Bend), DIN EN/IEC 60747 ï5 ï5 Option (Pb ïFree)	50 / Tube
MID400SDVM	SMT 8 ïPin (Lead Bend), DIN EN/IEC 60747 ï5 ï5 Option (Pb ïFree)	1,000 / Tape and Reel

MID400TVM

PACKAGE DIMENSIONS

PDIP8 GW CASE 709AC ISSUE O

LAN

onsemi, , and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi " or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi 's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent iMarking.pdf</u>. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as īis" and onsemi