

© Semiconductor Components Industries, LLC, 2009

Table 2. PIN DESCRIPTION

Pin	Name	I/O	Description	
1	V _{TD}		Internal 50 Ω Termination Pin. (See Table 4)	
2	D	ECL, CML, LVCMOS, LVDS, LVTTL Input	Noninverted Differential Input. (Note 1)	
3	D	ECL, CML, LVCMOS, LVDS, LVTTL Input	Inverted Differential Input. (Note 1)	
4	V _{TD}		Internal 50 Ω Termination Pin. (See Table 4)	
5	V _{TCLK}		Internal 50 Ω Termination Pin. (See Table 4)	
6	CLK	ECL, CML, LVCMOS, LVDS, LVTTL Input	Noninverted Differential Input. (Note 1)	
7	CLK	ECL, CML, LVCMOS, LVDS, LVTTL Input	Inverted Differential Input. (Note 1)	
8	V _{TCLK}		Internal 50 Ω Termination Pin. (See Table 4)	
9	V _{EE}		Negative Supply Voltage	
10	Q	ECL Output	Inverted Differential Output. Typically terminated with 50 Ω resistor to V _{CC} 2.0 V.	
11	Q	ECL Output	Noninverted Differential Output. Typically terminated with 50 Ω resistor to V _{CC} 2.0 V.	
12	V _{CC}		Positive Supply Voltage	
13	V _{TR}		Internal 50 Ω Termination Pin. (See Table 4)	
14	R	L6.627 484.0441.896 .9071 refBTET128.523 468.26 Tc[2.0 V)92.1(.) ∏ JE L		

Table 4. MAXIMUM RATINGS

Symbol	Parameter	Condition 1	Condition 2	Rating	Unit
V _{CC}	Positive Power Supply	V _{EE}			

Figure 4. Differential Input Driven Single-Ended

Figure 5. Differential Inputs Driven Differentially

Figure 6. Differential Inputs Driven Differentially

Figure 7. V_{th} Diagram

Figure 8. V_{CMR} Diagram

Figure 10. Typical Termination for Output Driver and Device Evaluation (See Application Note AND8020/D – Termination of ECL Logic Devices.)

ORDERING INFORMATION

Device	Package	Shipping [†]
NB4L52MNG	QFN 16, 3 x 3 mm (Pb Free)	123 Units / Rail
NB4L52MNR2G	QFN 16, 3 x 3 mm (Pb Free)	3000 / Tape & Reel

+ Foreinfrighmaties for the formation of the formation of

SCALE 2:1

NOTE 3

BOTTOM VIEW

QFN16 3x3, 0.5P CASE 485G ISSUE G

	° XXXXX XXXXX	
XXXXX	= Specific De	vice Co
А	= Assembly I	ocation
L	= Wafer Lot	

Code

L = Year Υ

- W = Work Week
- = Pb-Free Package

(Note: Microdot may be in either location)

*This information is generic. Please refer to device data sheet for actual part marking. Pb–Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking.

DATE 08 OCT 2021

onsemi, , and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or incruit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi