

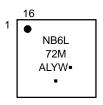
2.5 V / 3.3 V Differential 2 X 2 Crosspoint Switch with CML Outputs

Multi-Level Inputs w/ Internal Termination

NB6L72M

Description

The NB6L72M is a clock or data high–bandwidth fully differential 2 x 2 Crosspoint Switch with internal source termination and CML output structure, optimized for low skew and minimal jitter. The differential inputs incorporate internal 50 Ω termination resistors and will accept LVPECL, CML, LVDS, LVCMOS, or LVTTL logic levels. The SELECT inputs are single–ended and can be driven with LVCMOS/LVTTL.


The 16 mA differential CML outputs provide matching internal 50 Ω terminations and 400 mV output swings when externally terminated with a 50 Ω resistor to V_{CC} .

The device is offered in a small 3 mm x 3 mm 16–pin QFN package. The NB6L72M is a member of the ECLinPS MAX™

MARKING DIAGRAM*

QFN-16 MN SUFFIX CASE 485G

A = Assembly Location

L = Wafer Lot Y = Year W = Work Week ■ Pb-Free Package

(Note: Microdot may be in either location)

*For additional marking information, refer to Application Note AND8002/D.

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 9 of this data sheet.

Ω

 Functionally Compatible with Existing 2.5 V / 3.3 V LVEL, LVEP, EP, and SG Devices

1

- -40°C to +85°C Ambient Operating Temperature
- These are Pb–Free Devices

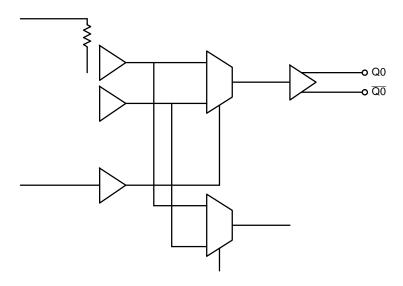
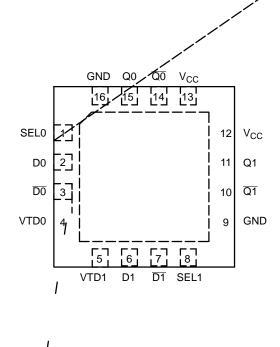



Figure 1. Logic/Block Diagram

Table 5. DC CHARACTERISTICS, Multi-Level Inputs ∨							

Table 6. AC CHARACTERISTICS V_{CC} = 2.375 V to 3.63 V, GND = 0 V, or V_{CC} = 0 V, GND = -2.375 V to -3.63 V, T_A = -40°C to +85°C; (Note 10)

Symbol	Characteristic		Min	Тур	Max	Unit
V _{OUTPP}	Output Voltage Amplitude (@ V _{INPPmin}) (Note 15) (See Figure 15)	f _{in} ≤ 3 GHz	250	380		mV

f

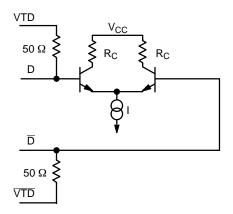


Figure 3. Input Structure

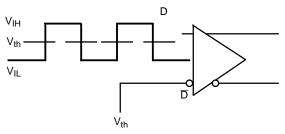


Figure 4. Differential Input Driven Single-Ended

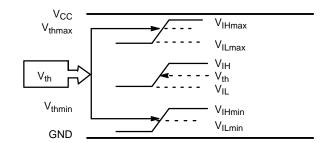


Figure 5. V_{th} Diagram

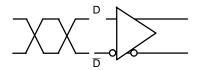
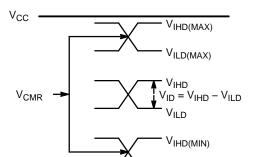
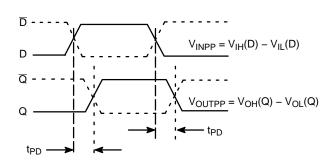



Figure 6. Differential Inputs Driven Differentially



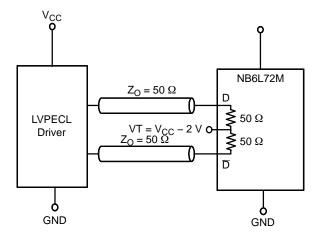
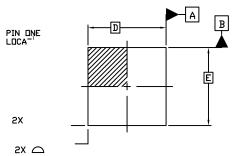
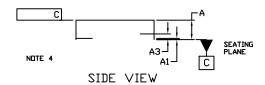

 $V_{ILD(MIN)}$

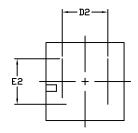
Figure 8. V_{CMR}

GND

Figure 7. Differential Inputs Driven Differentially







QFN16 3x3, 0.5P CASE 485G ISSUE G

DATE 08 OCT 2021

NOTE 3

BOTTOM VIEW

GENERIC MARKING DIAGRAM*

XXXXX = Specific Device Code A = Assembly Location

L = Wafer Lot Y = Year W = Work Week ■ Pb-Free Package

(Note: Microdot may be in either location)

^{*}This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking.

