2.5 /3.3 D 2 2 C C L C /D B /

Multi-Level Inputs w/ Internal Termination

B7L72

Description

The NB7L72M is a high bandwidth, low voltage, fully differential 2 x 2 crosspoint switch with CML outputs. The NB7L72M design is optimized for low skew and minimal jitter as it produces two identical copies of Clock or Data operating up to 7 GHz or 10 Gb/s, respectively. As such, the NB7L72M is ideal for SONET, GigE, Fiber Channel, Backplane and other clock/data distribution applications.

The differential IN/ \overline{IN} inputs incorporate internal 50 Ω termination resistors and will accept LVPECL, CML, or LVDS logic levels (see Figure 11). The 16 mA differential CML outputs provide matching internal 50 Ω terminations and produce 400 mV output swings when externally terminated with a 50 Ω resistor to V_{CC} (see Figure 9).

The NB7L72M is the 2.5 V/3.3 V version of the and NB7V72M and is offered in a low profile 3x3 mm 16-pin QFN package. Application notes, models, and support documentation are available at www.onsemi.com.

The NB7L72M is a member of the GigaComm[™] family of high performance clock products.

Features

- Maximum Input Data Rate > 10 Gb/s
- Data Dependent Jitter < 10 ps pk-pk
- Maximum Input Clock Frequency > 7 GHz
- Random Clock Jitter < 0.5 ps RMS, Max
- 150 ps Typical Propagation Delay
- 30 ps Typical Rise and Fall Times
- Differential CML Outputs, 400 mV peak-to-peak, typical
- Operating Range: $V_{CC} = 2.375$ V to 3.6 V with GND = 0 V
- Internal 50 Ω Input Termination Resistors
- QFN16 Package, 3mm x 3mm
- -40°C to +85°C Ambient Operating Temperature
- These are Pb–Free Devices

A = Assembly Location L = Wafer Lot

Table 3. ATTRIBUTES

Characteristics	Value
ESD Protection Human Body Model Machine Model	> 4 kV > 200 V
R _{PU} – Input Pullup Resistor	75 kΩ
Moisture Sensitivity (Note 3) QFN16	Level 1
Flammability Rating Oxygen Index: 28 to 34	UL 94 V–0 @ 0.125 in
Transistor Count	212
Meets or exceeds JEDEC Spec EIA/JESD78 IC Latchup Test	•

3. For additional information, see Application Note <u>AND8003/D</u>.

Table 4. MAXIMUM RATINGS

Symbol	Parameter	Condition 1	Condition 2	Rating	Unit
V _{CC}	Positive Power Supply	GND = 0 V		4.0	V
V _{IN}	Positive Input Voltage	GND = 0 V		–0.5 to V _{CC} +0.5	V
V _{INPP}	Differential Input Voltage IN – IN			1.89	V
I _{IN}	Input Current Through R_T (50 Ω Resistor)			±40	mA
I _{OUT}	Output Current Through R_T (50 Ω Resistor)			±40	mA
T _A	Operating Temperature Range			-40 to +85	°C
T _{stg}	Storage Temperature Range			-65 to +150	°C
θ_{JA}	Thermal Resistance (Junction-to-Ambient) (Note 4)	0 lfpm 500 lfpm	QFN16 QFN16	42 35	°C/W °C/W
θ_{JC}	Thermal Resistance (Junction-to-Case) (Note 4)		QFN16	4	°C/W
T _{sol}		-	-	-	-

NB7L72M

Symbol	Characteristic		Min	Тур	Max	Unit
POWER	SUPPLY CURRENT					
V _{CC}	Power Supply Voltage	$V_{CC} = 2.5 V$ $V_{CC} = 3.3 V$	2.375 3.0	2.5 3.3	2.625 3.6	V
I _{CC}	Power Supply Current (Inputs and Outputs Open)		80	135	175	mA

CML OUTPUTS

V _{OH}	Output HIGH Voltage (Note 6) $V_{CC} = 3.3$ $V_{CC} = 2.5$	V _{CC} – 20 3280 2480	V _{CC} 3300 2500	mV
V _{OL}	Output LOW Voltage (Note 6) $ V_{CC} = 3.3 \\ V_{CC} = 2.5 $	$V_{CC} - 500$ 2800 $V_{CC} - 500$ 2000	$V_{CC} - 400$ 2900 $V_{CC} - 350$ 2150	mV

DIFFERENTIAL CLOCK INPUTS DRIVEN SINGLE-ENDED (Note 7) (Figures 5 and 7)

V _{th}	Input Threshold Reference Voltage Range (Note 8)	1050	V _{CC} – 100	mV
V _{IH}	Single-Ended Input HIGH Voltage	V _{th} + 100	V _{CC}	mV
VIL	Single-Ended Input LOW Voltage	GND	V _{th} – 100	mV
VISE	Single-Ended Input Voltage (VIH - VIL)	200	2800	mV

DIFFERENTIAL DATA/CLOCK INPUTS DRIVEN DIFFERENTIALLY (Figures 6 and 8) (Note 9)

V _{IHD}	Differential Input HIGH Voltage (INn, INn)	1100		V _{CC}	mV
V _{ILD}	Differential Input LOW Voltage (INn, INn)	GND		V _{CC} – 100	mV
V _{ID}	Differential Input Voltage (INn, INn) (V _{IHD} – V _{ILD})	100		1200	mV
V _{CMR}	Input Common Mode Range (Differential Configuration, Note 10) (Figure 9)	950		V _{CC} – 50	mV
I _{IH}	Input HIGH Current INn, INn (VTIN/VTIN Open)	-150		150	μΑ
Ι _{ΙL}	Input LOW Current INn, INn (VTIN/VTIN Open)	-150		150	μΑ
CONTRO	DL INPUTS (SEL0, SEL1)				
V_{IH}	Input HIGH Voltage for Control Pins	2.0		V _{CC}	V
V_{IL}	Input LOW Voltage for Control Pins	GND		0.8	V
I _{IH}	Input HIGH Current	-150		150	μΑ
Ι _{ΙL}	Input LOW Current	-150		150	μΑ
TERMIN	ATION RESISTORS				
R _{TIN}	Internal Input Termination Resistor	40	50	60	Ω
R _{TOUT}	Internal Output Termination Resistor	40	50	60	Ω

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm.

5. Input and output parameters vary 1:1 with V_{CC} .

NB7L72M

Symbol	Characteristic		Min	Тур	Max	Unit
f _{MAX}		_{DUT} ≥ 250 mV _{DUT} ≥ 200 mV	7.0 8.5			GHz
f _{DATAMAX}	Maximum Operating Data Rate (PRBS23)		10			Gbps
V _{OUTPP}	Output Voltage Amplitude (@ V _{INPPmin}) (See Figures 3 and 10, Note 12)	f _{in} ≤ 8.5 GHz	200	400		mV
t _{PLH} , t _{PHL}	Propagation Delay to Differential Outputs, @ 1GHz, Measured at Differential Cross-point	INn/INn to Qn/Qn SELn to Qn/Qn	110	150	180	ps
t _{PLH} TC	Propagation Delay Temperature Coefficient			50		∆fs/°C
^t SKEW	Output-to-Output Skew (within device) (Note 13) Device-to-Device Skew (t _{pdmax} - t _{pdmin})				10 20	ps
t _{DC}	Output Clock Duty Cycle (Reference Duty Cycle = 50%)	$f_{in} \leq 8.5 GHz$	45	50	55	%
t _{jitter}	RJ – Output Random Jitter (Note 14) DJ – Deterministic Jitter (Note 15)	fin ≤ 8.5 GHz ≤ 10 Gbps		0.2	0.5 10	ps RMS ps pk–pk
V _{INPP}	Input Voltage Swing (Differential Configuration) (Note 16)		100		1200	mV
t _{r,} , t _f	Output Rise/Fall Times @ 1 GHz (20% – 80%),	Q, \overline{Q}	25	30	50	ps

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm.

11. Measured using a 400 mV source, 50% duty cycle clock source. All output loading with external 50 Ω to V_{CC}. Input edge rates \geq 40 ps (20% - 80%).

12. Output voltage swing is a single-ended measurement operating in differential mode.

13. Skew is measured between outputs under identical transitions and conditions. Duty cycle skew is defined only for differential operation when the delays are measured from cross-point of the inputs to the cross-point of the outputs.

14. Additive RMS jitter with 50% duty cycle clock signal.

15. Additive Peak-to-Peak data dependent jitter with input NRZ data at PRBS23.

16. Input voltage swing is a single-ended measurement operating in differential mode.

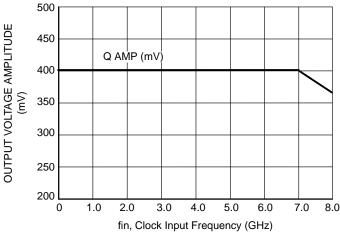
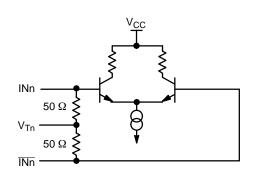
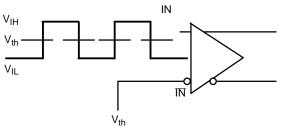
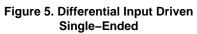
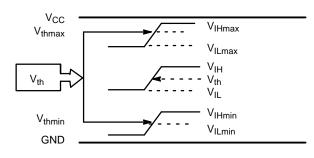
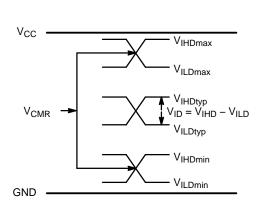
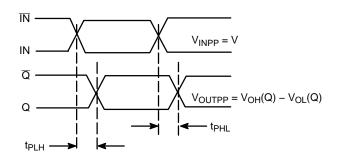


Figure 3. CLOCK Output Voltage Amplitude (V_{OUTPP}) vs. Input Frequency (f_{in}) at Ambient Temperature (Typ)


Figure 4. Input Structure



IN

ĪN

NB7L72M

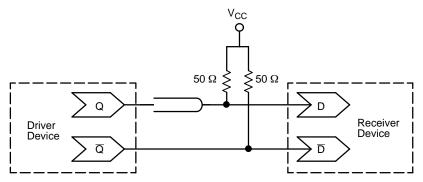
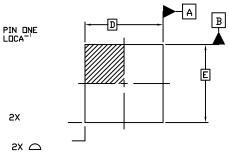
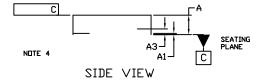
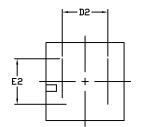


Figure 12. Typical Termination for CML Output Driver and Device Evaluation

ORDERING INFORMATION


Device	Package	Shipping [†]
NB7L72MMNG	QFN16 (Pb-free)	123 Units / Tube
NB7L72MMNHTBG	QFN16 (Pb–free)	100 / Tape & Reel


†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, <u>BRD8011/D</u>.


GigaComm is registered trademark of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries.

SCALE 2:1

NOTE 3

BOTTOM VIEW

QFN16 3x3, 0.5P CASE 485G ISSUE G

	• XXXXX XXXXX ALYW•	
А	= Specific De = Assembly L = Wafer Lot	

Code

L = Year Υ

- W = Work Week
- = Pb-Free Package

(Note: Microdot may be in either location)

*This information is generic. Please refer to device data sheet for actual part marking. Pb–Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking.

DATE 08 OCT 2021

onsemi, , and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or incruit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi