onsemi

3.3 V USB 3.1 Gę -2 10 Gb D a, C a ę, / S g,ę P> L ęa Ręd ę

NB7NPQ1102M

Description

The NB7NPQ1102M is a high performance single-Port linear redriver designed for USB 3.1 Gen 1 and USB 3.1 Gen 2 applications that supports both 5 Gbps and 10 Gbps data rates. Signal integrity

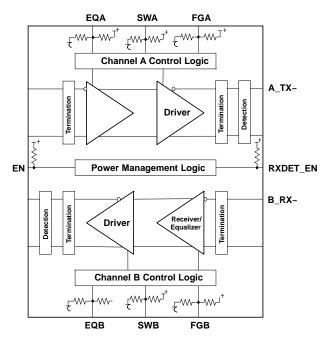


Figure 1. Logic Diagram of NB7NPQ1102M

Table 2. OPERATING MODES

Modes	RIN	ROUT
Power Down Mode	67 k Ω to Ground	High Z
Unplug Mode	High Z	40 k Ω to V_{DD}
Low Power Slumber Mode	50 Ω to V_{DD}	40 k Ω to V_{DD}
Active Mode	50 Ω to V_{DD}	50 Ω to V_{DD}

Table 3. EQUALIZATION SETTINGS:

EQA/ EQB	EQ (dB)		
	@ 2.5 GHz	@ 5 GHz	
Low "L" (Pin tied to Ground)	5.0	11.5	
Rext "R" (68 k Ω tied from pin to Ground)	2.7	7.4	
FLOAT "F" (Pin open)	4.0	9.9 (Default)	
HIGH "H" (Pin tied to V _{DD})	6.5	13.1	

Table 4. FLAT GAIN SETTING

FGA/ FGB	FG (dB)
Low "L" (Pin tied to Ground)	-1.2
Rext "R" (68 k Ω tied from pin to Ground)	0
FLOAT "F" (Pin open)	+1 .0 (Default)
HIGH "H" (Pin tied to V _{DD})	+2.0

Table 5. SWING SETTING

SWA/ SWB	SW (mVppd)
Low "L" (Pin tied to Ground)	800
Rext "R" (68 k Ω tied from pin to Ground)	1200
FLOAT "F" (Pin open)	1000 (Default)
HIGH "H" (Pin tied to V _{DD})	1100

Table 6. CHANNEL ENABLE SETTING

EN	Status
Low "0" (Pin tied to Ground)	Disabled
HIGH "1" (Pin tied to V _{DD})	Enabled (Default)

Table 7. RECEIVER DETECTION SETTING

RXDET_EN	Status
Low "0" (Pin tied to Ground)	Disabled
HIGH "1" (Pin tied to V _{DD})	Enabled (Default)

Table 8. ATTRIBUTES

Parameter		
ESD Protection	Human Body Model Charged Device Model	4 kV > 1.5 kV
Moisture Sensitivity, Indefinite Time Out of Dry pack (Note 1)		Level 1
Flammability Rating	Oxygen Index: 28 to 34	UL 94 V–O @ 0.125 in
Transistor Count		40517
Meets or exceeds JEDEC Spec EIA/JESD78 IC Latch-up Test		

1. For additional information, see Application Note AND8003/D.

Table 9. ABSOLUTE MAXIMUM RATINGS Over operating free-air temperature range (unless otherwise noted)

Parameter	Description	Min	Max	Unit
Supply Voltage (Note 2)	V _{DD}	-0.5	4.6	V
Voltage range at any input or output terminal	Differential I/O	-0.5	V _{DD} + 0.5	V
	LVCMOS inputs	-0.5	V _{DD} + 0.5	V
Output Current		-25	+25	mA
Power Dissipation, Continuous			1.0	W
Storage Temperature Range, T _{SG}		-65	150	°C
Maximum Junction Temperature, T _J			125	°C
Junction–to–Ambient Thermal Resistance @ 500 lfm, θ_{JA} (Note 3)			TBD	°C/W
Wave Solder, Pb–Free, T _{SOL}			265	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

All voltage values are with respect to the GND terminals.
 JEDEC standard multilayer board – 2S2P (2 signal, 2 power).

Table 10. RECOMMENDED OPERATING CONDITIONS Over operating free-air temperature range (unless otherwise noted)

Parameter	Description		Min	Тур	Max	Unit
V _{DD}	Main power supply	:	3.0	3.3	3.6	V
T _A	Operating free-air temperature Industrial Temperature	e Range -	-40		+85	°C
C _{AC}	AC coupling capacitor		75	100	265	nF
Rext	External Resistor for input control setting "R", 5%			68		kΩ

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

Table 11. POWER SUPPLY CHARACTERISTICS and LATENCY

Symbol	Parameter	Test Conditions	Min	Typ (Note 4)	Max	Unit
V _{DD}	Supply Voltage		3.0	3.3	3.6	V
IDD _{Active}	Active mode current	EN = 1, 10 Gbps, compliance test pattern		115		mA
IDD LPSlumber	Low Power Slumber mode current	EN = 1, no input signal longer than TLP-Slumber		0.4	0.64	mA
IDD _{Unplug}	Unplug mode current	EN = 1, no output load is detected		0.36	0.45	mA
IDDpd	Power-down mode current	EN = 0		10	50	μΑ
tpd	Latency	From Input to Output			2	ns

4. TYP values use V_DD = 3.3 V, T_A = 25°C

Table 12. CML RECEIVER AC/DC CHARACTERISTICS

 $V_{DD} = 3.3 V$ 0.3 V Over operating free-air temperature range (unless otherwise noted)

Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit
R _{RX-DIFF-DC}	Differential Input Impedance (DC)		72	100	120	Ω
R _{RX-SINGLE-DC}	Single-ended Input Impedance (DC)	Measured with respect to GND over a voltage of 500 mV max.	18		30	Ω
Z _{RX-HIZ-DC-PD}	Common-mode input impedance for V>0 dur- ing reset or power-down (DC)	VCM = 0 to 500 mV	25			kΩ
V _{RX-CM-AC-P}	Common mode peak voltage	AC up to 5 GHz			150	mVpeak
V _{RX-CM-DC} - Active-Idle-Delta-P	Common mode peak voltage AvgU0(V _{RX-D+} +V _{RX-D-})/2 –AvgU1(V _{RX-} _{D+} +V _{RX-D-})/2	Between U0 and U1. AC up to 5 GHz			200	mVpeak

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

Table 13. LVCMOS CONTROL PIN CHARACTERISTICS

 V_{DD} = 3.3 V 0.3 V Over operating free-air temperature range (unless otherwise noted)

Symbol	Parameter	Test Conditions	Min	Тур	Мах	Unit
2-LEVEL CONTROL PINS LVCMOS INPUTS (EN, RXDET_EN)						

VIH	DC Input Logic HIGH "1"		0.65 * V _{DD}	V _{DD}	V _{DD}	V	
V_{IL}	DC Input Logic LOW "0"		GND	GND	0.35 * V _{DD}	V	
I _{IH}	High–level input current						

Table 14. TRANSMITTER AC/DC CHARACTERISTICSVDD = 3.3 V0.3 V Over operating free-air temperature range (unless otherwise noted)

	Parameter	Test Conditions	Min	Тур	Мах	Unit
V _{TX-DIFF-PP}	Output differential p–p voltage swing at 100 MHz	Differential Swing				

Table 14. TRANSMITTER AC/DC CHARACTERISTICS

 V_{DD} = 3.3 V 0.3 V Over operating free-air temperature range (unless otherwise noted)

		Parameter	Test Conditions	Min	Тур	Max	Unit		
C	CHANNEL PERFORMANCE								
	V _{SW_5G}	 1 dB compression point output swing (5 GHz) 	SWx = L SWx = R SWx = F SWx = H		600 900 750 825		mVppd		
	DDNEXT	Differential near-end crosstalk (Note 6)	100MHz to 5GHz, RXDET_EN = 1 Figure 3		-40		dB		

SIGNAL AND FREQUENCY DETECTORS

Vth_dsm	Low power slumber mode detector threshold	LFPS signal threshold in Low power Slumber mode	100	600	mVppd
Vth_am	Active mode detector threshold	Signal threshold in Active and Slumber mode (Note 8)	45	175	mVppd

 Measured using a Vector Network Analyzer (VNA) with –15 dbm power level applied to the adjacent input. The VNA detects the signal at the output of the victim channel. All other inputs and outputs are terminated with 50–Ω.

7. Guaranteed by design and characterization.

8. Below the minimum is no signal 25°C. Above the maximum is active.

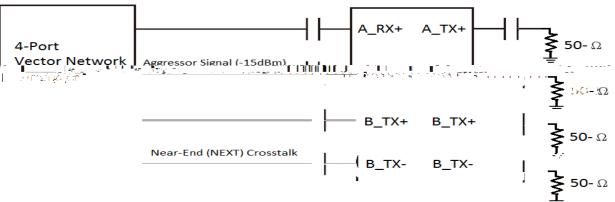
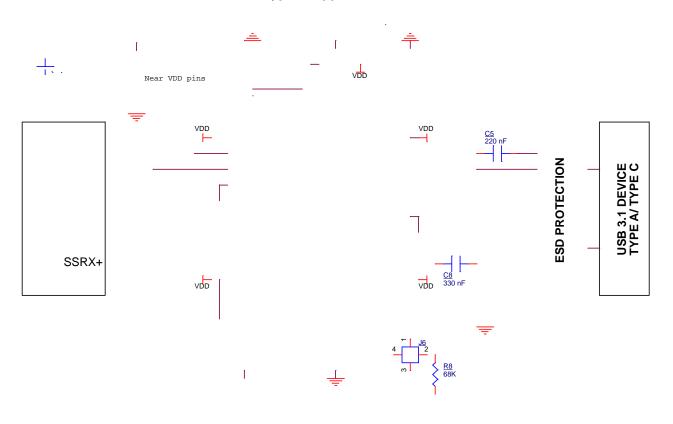



Figure 3. Channel-isolation Test Configuration

Typical Application:

WQFN30 2.50x4.50, 0.4P CASE 510CK ISSUE B

DATE 21 MAY 2020

- А = Assembly Location
- = Wafer Lot L
- Υ = Year
- W = Work Week
- = Pb-Free Package
- *This information is generic. Please refer to device data sheet for actual part marking. Pb–Free indicatorAing8orAing8orAi3Package-37.928 52.214 I0 52.214 I0 0 ISC

onsemi and are trademarks of Semiconductor Components Industries, LLC dba **onsemi** or its subsidiaries in the United States and/or other countries. **onsemi** reserves the right to make changes without further notice to any products herein. **onsemi**

onsemi, , and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or incruit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi