

1.8 V / 2.5 V Differential D Flip-Flop w/ Reset and CML Outputs

Multi-Level Inputs w/ Internal Termination

QFN-16 MN SUFFIX CASE 485G

MARKING DIAGRAM*

Description

NB7V52M

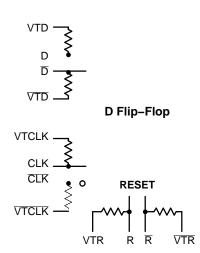
The NB7V52M is a 10 GHz differential D flip-flop with a differential asynchronous Reset. The differential D/ \overline{D} , CLK/ \overline{CLK} and R/ \overline{R} inputs incorporate dual internal 50 Ω termination resistors and will accept LVPECL, CML, LVDS logic levels.

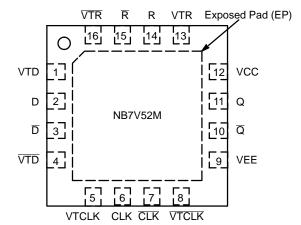
When Clock transitions from logic Low to High, Data will be transferred to the differential CML outputs. The differential Clock inputs allow the NB7V52M to also be used as a negative edge triggered device.

The 16 mA differential CML outputs provide matching internal 50 Ω termination and produce 400 mV output swings when externally receiver terminated with a 50 Ω resistor to V_{CC} .

The NB7V52M is offered in a low profile 3 mm x 3 mm 16-pin QFN package. The NB7V52M is a member of the GigaComm $^{\text{TM}}$ family of high performance clock products. Application notes, models, and support documentation are available at www.onsemi.com.

Features


- Maximum Input Clock Frequency > 10 GHz
- Maximum Input Data Rate > 10 Gb/s
- Random Clock Jitter < 0.8 ps RMS, Max
- 200 ps Typical Propagation Delay
- 35 ps Typical Rise and Fall Times
- Differential CML Outputs, 400 mV Peak-to-Peak, Typical
- Operating Range: $V_{CC} = 1.71 \text{ V}$ to 2.625 V with $V_{EE} = 0 \text{ V}$
- Internal 50 Ω Input Termination Resistors
- QFN-16 Package, 3mm x 3mm
- -40°C to +85°C Ambient Operating Temperature
- These are Pb-Free Devices


A = Assembly Location
L = Wafer Lot
Y = Year
W = Work Week
= Pb-Free Package

*For additional marking information, refer to Application Note <u>AND8002/D</u>.

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 9 of this data sheet.

Table 2. ATTRIBUTES

Char	Value			
ESD Protection	Human Body Model Machine Model	> 2 kV > 200 V		
Moisture Sensitivity	16-QFN	Level 1		
Flammability Rating	Oxygen Index: 28 to 34	UL 94 V-0 @ 0.125 in		
Transistor Count		173		
Meets or exceeds JEDEC Spec EIA/JESD78 IC Latchup Test				

For additional information, see Application Note AND8003/D.

Table 3. MAXIMUM RATINGS

Symbol	Parameter	Condition 1	Condition 2	Rating	Unit
V _{CC}	Positive Power Supply	V _{EE} = 0 V		3.0	V
V _{IO}	Positive Input/Output Voltage	V _{EE} = 0 V	-0.5 ≤ VIO ≤ VCC + 0.5	-0.5 to V _{CC} +0.5	V
V _{INPP}	Differential Input Voltage CLK – $\overline{\text{CLK}}$, D – $\overline{\text{D}}$, R – $\overline{\text{R}}$			1.89	V
I _{OUT}	Output Current Through R _{TOUT} (50 Ω Resistor)	Continuous Surge		34 40	mA
I _{IN}	Input Current Through R _{TIN} (50 Ω Resistor)			±40	mA
T _A	Operating Temperature Range			-40 to +85	°C
T _{stg}	Storage Temperature Range			-65 to +150	°C
θ_{JA}	Thermal Resistance (Junction–to–Ambient) (Note 3)	0 lfpm 500 lfpm	QFN-16 QFN-16	42 35	°C/W °C/W
$\theta_{\sf JC}$	Thermal Resistance (Junction-to-Case) (Note 3)		QFN-16	4	°C/W
T _{sol}	Wave Solder Pb-Free			265	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

3. JEDEC standard multilayer board – 2S2P (2 signal, 2 power) with 8 filled thermal vias under exposed pad.

Table 4. DC CHARACTERISTICS, Multi-Level Inputs V_{CC} = 1.71 V to 2.625 V, V_{EE} = 0 V, T_A = -40°C to +85°C (Note 4)

Symbol	Characteristic		Min	Тур	Max	Unit
POWER	SUPPLY CURRENT					
I _{CC}	Power Supply Current (Inputs and Outputs Open)	V _{CC} = 2.5 V V _{CC} = 1.8 V		90 70	110 90	mA
CML OU	TPUTS					
V _{OH}	Output HIGH Voltage (Note 5)	V _{CC} = 2.5 V V _{CC} = 1.8 V	V _{CC} – 30 2470 1770	V _{CC} – 10 2490 1790	V _{CC} 2500 1800	mV
V _{OL}	Output LOW Voltage (Note 5)	V _{CC} = 2.5 V	V _{CC} – 650 1850	V _{CC} – 500 2000	V _{CC} – 400 2100	mV
		V _{CC} = 1.8 V	V _{CC} – 600 1200	V _{CC} – 450 1350	V _{CC} – 350 1450	
DIFFERE	ENTIAL CLOCK INPUTS DRIVEN SINGLE-ENDED	(Note 6) (Figure	es 5 and 7)			
V_{th}	Input Threshold Reference Voltage Range (Note 7)		1000		V _{CC} – 100	mV
V_{IH}	Single-Ended Input HIGH Voltage		V _{th} + 100		V _{CC}	mV
V_{IL}	Single-Ended Input LOW Voltage		V _{EE}		V _{th} – 100	mV
V_{ISE}	Single-Ended Input Voltage (V _{IH} - V _{IL})		200		1200	mV
DIFFERE	ENTIAL D/D, CLK/CLK, R/R INPUTS DRIVEN DIFFE	RENTIALLY (F	igures 6 and 8) (Note 8)		
V_{IHD}	Differential Input HIGH Voltage		1100		V _{CC}	mV
V_{ILD}	Differential Input LOW Voltage		V _{EE}		V _{CC} – 100	mV
V_{ID}	Differential Input Voltage (V _{IHD} – V _{ILD})		100		1200	mV
V _{CMR}	Input Common Mode Range (Differential Configuration, Note 9) (Figure 10)		1050		V _{CC} – 50	mV
I _{IH}	Input HIGH Current (VT _x /VT _x Open)		-250		250	μΑ
I _{IL}	Input LOW Current (VT _x /VT _x Open)		-250		250	μΑ
TERMIN	ATION RESISTORS					-
R _{TIN}	Internal Input Termination Resistor		45	50	55	Ω
R _{TOUT}	Internal Output Termination Resistor		45	50	55	Ω

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with meet the specifications after thermal equilibrium has been establis board with meintained transverse airflow greater than 500 lfpm.
Input and output parameters vary 1:1 with V_{CC}.
CML outputs loaded with 50 Ω to V_{CC} for proper operation.
V_{th}, V_{IH}, V_{IL}, and V_{ISE} parameters must be complied with simultaneously.
V_{th} is applied to the complementary input when operating in single–ended mode.
V_{IHD}, V_{ILD}, V_{ID}

Table 5. AC CHARACTERISTICS V_{CC} = 1.71 V to 2.625 V; V_{EE} = 0 V; T_A = -40°C to 85°C (Note 10)

Symbol	Characteristic		Тур	Max	Unit
f _{MAX}	Maximum Input Clock Frequency				

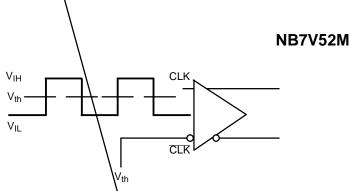
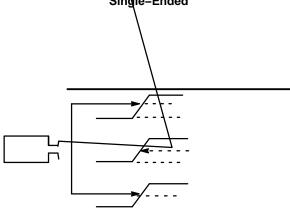



Figure 5. Differential Input Driven Single-Ended

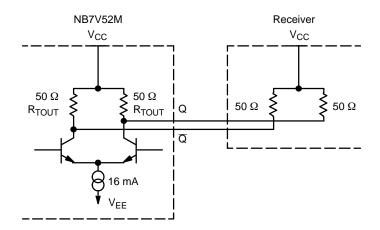
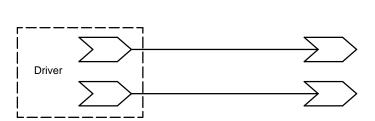
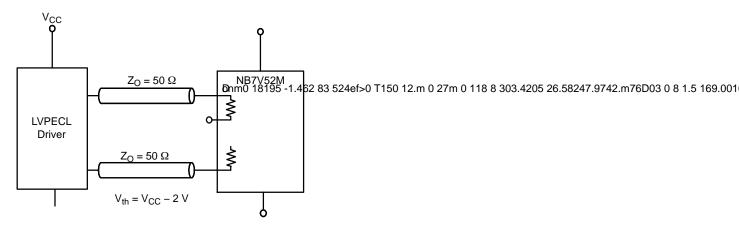
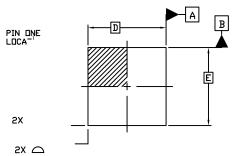




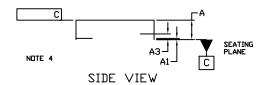
Figure 11. Typical CML Output Structure and Termination

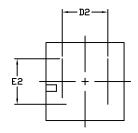
 $\mathsf{GND/V}_{\mathsf{EE}}$

ORDERING INFORMATION

Device	Package	Shipping [†]
NB7V52MMNG	QFN-16 (Pb-free)	123 Units / Rail
NB7V52MMNHTBG	QFN-16 (Pb-free)	100 / Tape & Reel
NB7V52MMNTXG	QFN-16 (Pb-free)	3000 / Tape & Reel


[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, <u>BRD8011/D</u>.


GigaComm is a trademark of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries.



QFN16 3x3, 0.5P CASE 485G ISSUE G

DATE 08 OCT 2021

NOTE 3

BOTTOM VIEW

GENERIC MARKING DIAGRAM*

XXXXX = Specific Device Code A = Assembly Location

L = Wafer Lot Y = Year W = Work Week ■ Pb-Free Package

(Note: Microdot may be in either location)

^{*}This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking.

