onse 1

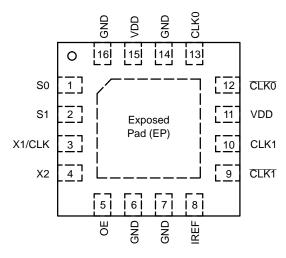


Figure 2. Pin Configuration (Top View)

Table 1. PIN DESCRIPTION

Pin	Symbol	I/O	Description		
1	S0	Input	LVTTL/LVCMOS frequency select input 0. Internal pullup resistor to V _{DD} . See output select Table 2 for details.		
2	S1	Input	LVTTL/LVCMOS frequency select input 1. Internal pullup resistor to V_{DD} . See output select Table 2 for details.		
11, 15	V_{DD}	Power Supply	Positive supply voltage pins are connected to +3.3 V supply voltage.		
3	X1/CLK	Input	Crystal or Clock input. Connect to 25 MHz crystal source or single-ended clock.		
4	X2	Input	Crystal input. Connect to a 25 MHz crystal or leave unconnected for clock input.		
5	OE	Input	When floating, the internal pull-up resistor to V _{DD} will make OE logic High enabling the Output When connected to GND, logic Low, the outputs are disabled and will go to high-Z.		
6, 7, 14, 16	GND	Power Supply	Ground 0 V. These pins provide GND return path for the devices.		
8	I _{REF}	Output	Output current reference pin. Precision resistor (typ. 475 Ω) is 28 Tc(Z.) 0 TD0et outputs arrent21.		

Table 3. ATTRIBUTES

Charact	Value			
ESD Protection Human Body Model		> 2 kV		
RPU – OE, S0 and S1 Pull-up Re	100 kΩ			
Moisture Sensitivity, Indefinite Tin	Level 1			
Flammability Rating	Oxygen Index: 28 to 34	UL 94 V-0 @ 0.125 in		
Transistor Count	7623			
Meets or exceeds JEDEC Spec EIA/JESD78 IC Latchup Test				

^{1.} For additional information, see Application Note AND8003/D.

Table 4. MAXIMUM RATINGS (Note 2)

Symbol	Parameter	Condition 1	Condition 2	Rating	Unit
V _{DD}	Positive Power Supply	GND = 0 V		4.6	V
VI	Input Voltage (V _{IN})	GND = 0 V	$GND \leq V_I \leq V_DD$	-0.5 V to V _{DD} +0.5 V	V
T _A	Operating Temperature Range			-40 to +105	°C
T _{stg}	Storage Temperature Range			-65 to +150	°C
T _{J(max)}	Maximum Junction Temperature			+125	°C
$\theta_{\sf JA}$	Thermal Resistance (Junction-to-Ambient)	0 lfpm 500 lfpm	QFN-16 QFN-16	42 35	°C/W °C/W
θ _{JC}	Thermal Resistance (Junction-to-Case)	(Note 3)	QFN-16	4	°C/W
T _{sol}	Wave Solder			265	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

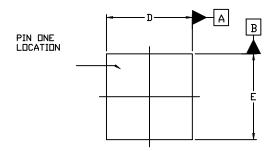
Table 5. DC CHARACTERISTICS ($V_{DD} = 3.3 \text{ V} \pm 10\%$, GND = 0 V, $T_A = -40^{\circ}\text{C}$ to $+105^{\circ}\text{C}$, Note 4)

Symbol	Characteristic	Min	Тур	Max	Unit
VDD	Power Supply Voltage	2.97	3.3	3.63	V
I _{DD}	Power Supply Current		120	135	mA
I _{DDOE}	Power Supply Current when OE is Set Low			65	mA
V _{IH}	Input HIGH Voltage (X/CLK, S0, S1, and OE)	2000		V _{DD} + 300	mV
V_{IL}	Input LOW Voltage (X/CLK, S0, S1, and OE)	GND – 300		800	mV
V _{OH}	Output HIGH Voltage for HCSL Output (See Figure 5)	660	700	850	mV
V _{OL}	Output LOW Voltage for HCSL Output (See Figure 5)	-150	0	150	mV
V _{cross}	Crossing Voltage Magnitude (Absolute) for HCSL Output	250		550	mV
ΔV_{cross}	Change in Magnitude of V _{cross} for HCSL Output			150	mV

NOTE: Device will meet the specifications after thermal equilibrium has been established BT8 08e 205.66.753 the specifr516.189 190.715 TT4 9tc/r2 wills break

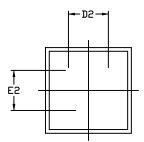
^{2.} Maximum ratings applied to the device are individual stress limit values (not normal operating conditions) and not valid simultaneously. If stress limits are exceeded device functional operation is not implied, damage may occur and reliability may be affected.

^{3.} JEDEC standard multilayer board – 2S2P (2 signal, 2 power).


Table 7. ELECTRICAL CHARACTERISTICS – PHASE JITTER PARAMETERS

Symbol	Parameter
--------	-----------

NE www.


QFNW16 3x3, 0.5P CASE 484AN **ISSUE A**

DATE 22 AUG 2018

	MILLIMETERS			
DIM	MIN.	N□M.		
Α	0.80	0.90		
A1				
A၁				
Ø			0.30	
D				
D2	1.30	1.40		
E)	3.10	
E2	1.30	1.40	1.50	
е	0.50 BSC			
·				

GENERIC MARKING DIAGRAM*

XXXXX XXXXX ALYW=

XXXXX = Specific Device Code

= Assembly Location Α

L = Wafer Lot = Year

= Work Week W

= Pb-Free Package (Note: Microdot may be in either location) *This information is generic. Please refer to device data sheet for actual part marking. Pb–Free indicator, "G" or microdot " ■", may or may not be present. Some products may not follow the Generic Marking.

