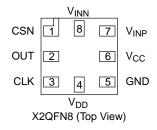
12-Bit Low Power SAR ADC

NCD98010, NCD98011

The NCD98010 (unsigned output) and the NCD98011 (signed output) ADC products provide an extremely low power solution for analog to digital conversion applications using a capacitor-based successive-approximation architecture. Optimized for low power and speed, the NCD98010/1 can achieve a sample rate of 2 MSPS while consuming less than 1 mW of power. The device also features a large input voltage range of 1.65 V to 3.3 V for various applications for both analog and digital supplies. The SPI-compatible interface provides a straight-forward data-acquisition method.

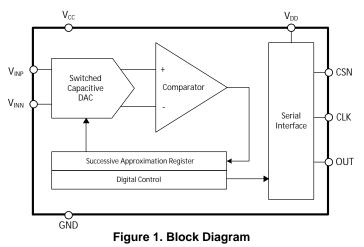
Features


• Nanowatt Power Consumption

ISe

- Fully Differential Input
- 2-MSPS Throughput
- Small Package Size
- Pre-Calibrated
- SPI Interface
- These Devices are Pb-Free, Halogen Free/BFR Free and icesces a1T4 0 TD-0042 TG 0006 T e Weara

PIN CONFIGURATION


ORDERING INFORMATION

ГD-0042 Тс 0006 Т е Device	Wearable F Package	^{itn} Ssipping [†]	
NCD98010XMXTAG	X2QFN	5000 / Tape &	
NCD98011XMXTAG		Reel	

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

• Portable Medical Equipment

• Glucose Meters

PIN DESCRIPTION

X2QFN Pin No.	Name	Function
1	CSN	Chip select (active low)
2	OUT	Data Output (serialized)
3	CLK	Clock
4	VDD	Digital I/O supply voltage
5	GND	Common ground for all pins
6	VCC	Analog supply and ADC reference voltage
7	V _{INP}	Analog input, positive signal
8	V _{INN}	Analog input, negative signal

MAXIMUM RATINGS

Rating

Symbol

Parameter	Conditions	Symbol	Min	Тур
POWER SUPPLY REQUIREMENTS	3			
Analog Supply and ADC reference		V _{CC}	1.65	3
Digital I/O Supply		V _{DD}	1.65	3
	2 MSPS for V _{CC} = 3.6 V			100
Analog Supply Current	1 MSPS for V_{CC} = 3 V			50
Analog Supply Current	100 kSPS for V _{CC} = 3.6 V	- Ivcc		
	1 MSPS for V_{CC} = 1.8 V			
	2 MSPS for V _{CC} = 3.6 V			
	1 MSPS for V_{CC} = 3 V			V
Analog Power Dissipation	100 kSPS for V _{CC} = 3.6 V	Pvcc		
	1 MSPS for V_{CC} = 1.8 V			
	2 MSPS for V_{DD} = 3.6 V			
Digital Supply Current Dependent on SDO loading (tested with ~7 pF)	1 MSPS for V_{DD} = 3 V			
	100 kSPS for V_{DD} = 3.6 V	- I _{VDD}		
	1 MSPS for V_{DD} = 1.8 V			
Standby current (CSN high) (Note 2)	V _{CC} = 3.6 V	I _{STNDBY}		

ELECTRICAL CHARACTERISTICS (T_J = 25°C, V_{CC} = 3 V, unless otherwise noted)

ELECTRICAL CHARACTERISTICS (T_J = 25°C, V_{CC} = 3 V, unless otherwise noted)

Parameter	Conditions	Symbol	Min	Тур	Max	Unit
DYNAMIC CHARACTERISTICS						
Total–Harmonic Distortion	$f_{IN} = 1 \text{ kHz } V_{CC} = 3.3 \text{ V}$	THD		-80		dB
	$f_{IN} = 1 \text{ kHz } V_{CC} = 1.8 \text{ V}$			-80		
Signal-to-Noise and Distortion (Note 4)	$f_{IN} = 1 \text{ kHz } V_{CC} = 3.3 \text{ V}$	SINAD	68	69		dB
	$f_{IN} = 1 \text{ kHz } V_{CC} = 1.8 \text{ V}$			62		
Spurious-Free Dynamic Range	$f_{IN} = 1 \text{ kHz } V_{CC} = 3.3 \text{ V}$	SFDR	69	80		dB
(Note 4)	$f_{IN} = 1 \text{ kHz } V_{CC} = 1.8 \text{ V}$	SIDI		74		

DIGITAL INPUT/OUTPUT

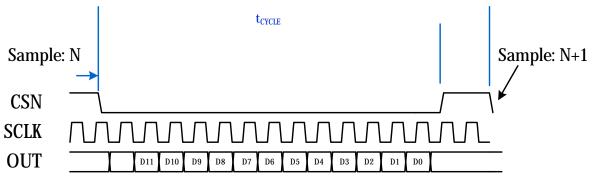
High-Level Input Voltage		V _{IH}	V _{DD} *0.7		V
Low–Level Input Voltage		V _{IL}		V _{DD} *0.3	V
High-Level Output Voltage	2 mA drive	V _{OH}	V _{DD} – 0.5 V		V
Low–Level Output Voltage	2 mA drive	V _{OL}		GND+0.5	V

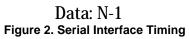
Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

2. Standby current includes both digital and analog currents.

3. INL and DNL parameters were verified via bench testing and are not used for production screening.

4. SINAD and SFDR are tested at production and guaranteed by correlation to bench test results.


TIMING CHARACTERISTICS (T_J = 25°C unless otherwise specified)


Parameter	Conditions	Symbol	Min	Тур	Max	Unit
TIMING SPECIFICATIONS						
Throughput		f _{THROUGH}			2	MSPS
Cycle Time		fCYCLE	0.5			μs
Conversion Time		f _{CONV}	437.5			ns
Data Delay				1		cycle

TIMING REQUIREMENTS

Acquisition Time (CSN high)	t _{ACQ}	62.5		ns
CLK Frequency	fclk		32	MHz
CLK Period	t _{CLK}		31.25	ns
CSN Falling to 1 st SCLK falling edge	^t CSN_SCLK	15.75		ns
Last SCLK falling edge to CSN rising	^t SCLK_CSN	15.75		ns
Falling SCLK to SDO valid (Note 5) Assumed	10 pF Load t _{SDO_VALID}		30	ns

5. When SCLK is running at higher frequencies, the t_{SDO_VALID} of 30 ns requires SDO to be sampled on the falling edge of SCLK at the end of the bit width just before SDO changes to the next output. This will ensure acquisition of the correct data. For example, location A shown below would be the best place to sample SDO for the acquisition of bit 9.

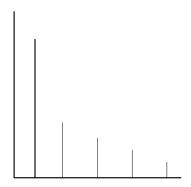


Figure 16. Spurious Free Dynamic Range in the Frequency Domain

 $1 \ \mu$ F. All decoupling capacitors must connect directly to a low impedance ground plane in order to be effective. Short traces or vias are required to minimize additional series inductance. Ceramic capacitors are recommended based on their low ESR and ESL. X7R ceramic capacitors are recommended for applications involving a wide temperature range.

Minimal Component Realization

For applications where minimizing board space trumps ADC performance, the NCD98010/1 connection diagram can be reduced as shown in Figure 21 below. The removal of the input buffering may be an option depending on the nature of the differential analog input source. Removing the anti–aliasing filter would come at the expense of reduced ENOB due to the digitization of aliased signals.

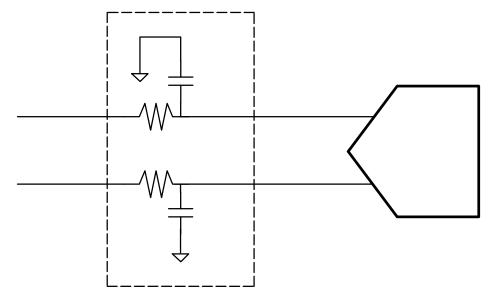
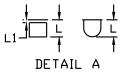
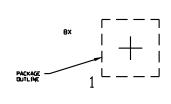


Figure 21. Reduced Component Connection Diagram

X2QFN8, 1.5x1.5, 0.5P CASE 722AM ISSUE O


DATE 20 JUL 2018

TOP VIEW


SIDE VIEW

COPLAN

DETAIL B

7x

BOTTOM VIEW

RΓ

GENERIC MARKING DIAGRAM*

X = Specific Device Code M = Date Code

.

*This information is generic. Please refer to device data sheet for actual part marking. Pb–Free indicator, "G" or microdot " ■", may or may not be present. Some products may not follow the Generic Marking.

onsemi, , and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or incruit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi