

Figure 1. Typical Application Circuit with Single Input Power Supply (LDO Enabled)

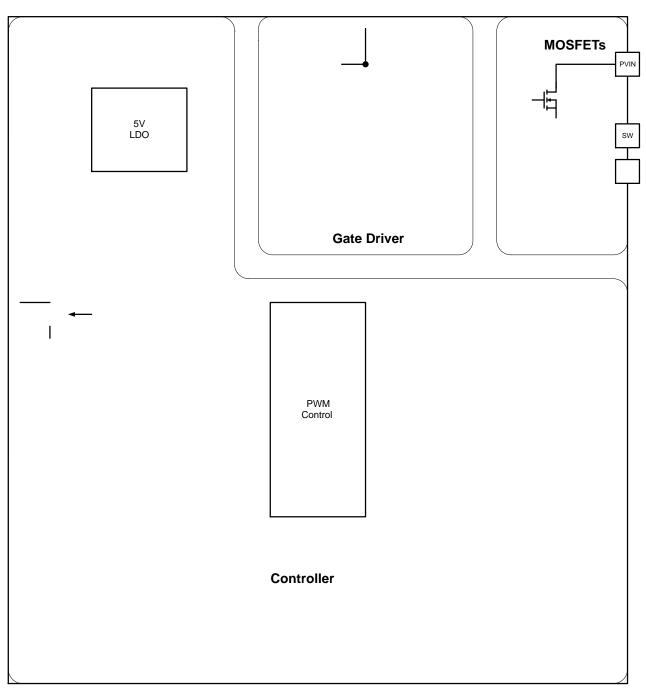


Figure 3. Functional Block Diagram

PIN DESCRIPTION

Pin Name		Туре	Description				
1	ILIM	Analog Output	Current Limit. A resistor between this pin and AGND to program current limit.				
2	PGOOD	Logic Output	Power Good. Open drain output. Provides a logic high valid power good output signal, indicating the regulator's output is in regulation window.				
3	VIN	Power Input	Power Supply Input of LDO. Power supply input pin of internal 5 V LDO. A 1.0 μF or more ceramic capacitor must bypass this input to power ground. The capacitor should be placed as close as possible to this pin. A direct short from this pin to VDRV (pin 5) disables the internal LDO for applications with an external 5 V supply as power of VDRV and VCC.				
4	VCC	Analog Power	Supply Voltage Input of Controller. A 2.2 μF or larger ceramic capacitor bypasses this input to GND. This capacitor should be placed as close as possible to this pin				
5	VDRV	Analog Power	Output of LDO and Supply Voltage Input of Gate Drivers. Output of integrated 5.0 V LDO and power supply input of gate drivers. A 4.7 μ F/25 V or larger ceramic capacitor bypasses this pin to PGND. The capacitor should be placed as close as possible to this pin.				
6	GL	Analog Output	Gate of Low Side MOSFET. Internally connected to the gate of the low side power MOSFET. No external connection required.				
7~10,19	PGND	Power Ground	Power Ground. These pins are the power supply ground pins of the device, which are connected to source of internal low side power MOSFET. Must be connected to the system ground.				
11~18	SW	Power Bidirectional	Switch Node. Pins to be connected to an external inductor. These pins are interconnection between internal high side MOSFET and low side MOSFET.				
20~24	PVIN	Power Input	Power Supply Input. These pins are the power supply input pins of the device, which are connected to drain of internal high side power MOSFET. A 22 μF or more ceramic capacitor must bypass this input to PGND. The capacitors should be placed as close as possible to these pins.				
25	PHASE	Power Return	Phase Node. Provides a return path for integrated high side gate driver. It is internally connected to source of high side MOSFET.				
26	BOOT	Power Bidirectional	Bootstrap. Provides bootstrap voltage for high side gate driver. A 0.22 $\mu F/25$ V ceramic capacitor is required from this pin to PHASE (pin 25).				
27	EN	Logic Input	Enable. Logic high enables controller while logic low disables controller. Input supply UVLO can be programmed at this pin.				
28	VOS	Analog Input	Voltage Sense. Remote output voltage sense. Connect to VOUT through 1 $\mbox{k}\Omega$ series resistor.				
29	SS	Analog Input	Soft Start. A resistor between this pin and GND to program the soft start slew rate and options.				
30	FB	Analog Input	Feedback. Inverting input to error amplifier.				
31	VSNS	Analog Input	Voltage Sense Negative Input. Connect this pin to remote voltage negative s point.				
32	AGND	Analog Ground	Analog Ground. Ground of controller. Must be connected to the system grou				
33~34	NC		No Connection.				
35	HICCUP#	Analog Input	Latch Off / Hiccup#. Float this pin to enable latch off mode protections (OCP/ UVP/OVP); Ground this pin to ground to enable hiccup mode protections.				
36	MODE/FSET	Analog Input	Mode and Frequency Set. A resistor between this pin and AGND to program operation mode and nominal switching frequency.				

MAXIMUM RATINGS

		Va		
Rating	Symbol	MIN	МАХ	Unit
Power Supply Voltage to PGND	V _{PVIN} , V _{VIN}		25	V
PHASE/SW to PGND	V _{PHASE} , V _{SW}	0.6 5 (<50 ns)	25 28 (<10 ns)	V
PVIN to SW/PHASE	V _{PVIN_SW}	0.3 5 (<10 ns)	25 33 (<10 ns)	V
Driver Supply Voltage to PGND	V _{VDRV}	0.3	5.5	V
Analog Supply Voltage to AGND	V _{VCC}	0.3	6.5	V
BOOT to PGND	BOOT_PGND	0.3	30 33 (<10 ns)	V
BOOT to PHASE/SW	BOOT_PHASE/SW	0.3	6.5	V
GL to PGND	GL	0.3 2 (<200 ns)	VDRV+0.3	V
VSNS to AGND	VSNS	0.2	0.2	V
PGND to AGND	PGND	0.3	0.3	V
Other Pins		0.3	VCC+0.3	V
ESD, Human Body Model per ANSI/ESDA/JEDEC JS 001 (Note 1)	ESD _{HBM}	2.0		kV
ESD, Charge Device Model per ANSI/ESDA/JEDEC JS 002 (Note 1)	ESD _{CDM}	1.5		kV
Maximum Latch up Current Rating. 150°C, per JEDEC JESD78 (Note 2)	ILU			

ELECTRICAL CHARACTERISTICS (VIN = 12 V, typical values are referenced	to $T_A = T_J = 2$	25°C, Min a	nd Max va	lues are re	eferenced
to $T_A = T_J = 40^{\circ}$ C to 125°C. unless other noted.)					

Characteristics	Test Conditions	Symbol	MIN	ТҮР	MAX	UNITS
SUPPLY VOLTAGE MONITOR						
VCC Under Voltage (UVLO) Threshold	VCC falling	V _{DDUV}	4.0			V
VCC OK Threshold	VCC rising	V _{DDOK}			4.5	V
VCC UVLO Hysteresis		V _{DDHYS}		200		mV
SUPPLY CURRENT						
				T		1

PVIN Shutdown Current	EN low		I _{SDPVIN}	4.8	20	μΑ	
V _{IN} Quiescent Supply Current (VCC Current Included)	EN high, no switching	LDO enabled, VIN = 18 V, VCC = VDRV					

ELECTRICAL CHARACTERISTICS (V_{IN} = 12 V, typical values are referenced to $T_A = T_J = 25^{\circ}C$, Min and Max values are referenced
to $T_A = T_J = 40^{\circ}C$ to 125°C. unless other noted.)

Characteristics	Test	Test Conditions		MIN	TYP	MAX	UNITS
SOFT START	SOFT START						
Soft Start Time	1% Resistor from SS Pin to AGND	0 or 4.53k	T _{SS}		1.0	1.1	ms
		1.5k or 5.76k			2.0	-	
				-			

DETAILED DESCRIPTION

General

The NCP3284/A, a single-phase synchronous buck regulator, integrates power MOSFETs to provide a high-efficiency and compact-footprint power management solution. The NCP3284/A is able to deliver up to 30 A TDC output current on a wide output voltage range. Operating in high switching frequency up to 1 MHz allows employing small size inductors and capacitors while maintaining high efficiency due to integrated solution with high performance power MOSFETs. It provides differential voltage sense, flexible soft-start programming, and comprehensive protections.

Operation Modes

Operation mode and switching frequency are programmed at MODE/FSET pin with a \pm 1% tolerance resistor as shown in Table 1.

Table 1. MODE AND SWITCHING FREQUENCY CONFIGURATION

Resistance @ MODE/FSET Pin (Ω, ±1%)	Frequency (kHz)	Operation Mode
0	600	FCCM
2.49k	1000	FCCM
4.99k	500	Auto CCM/DCM
7.5k	500	FCCM
10.5k	600	Auto CCM/DCM
12.1k	800	Auto CCM/DCM
14.0k	1000	Auto CCM/DCM
Float	800	FCCM

Current Mode RPM Operation

The NCP3284/A operates with the current

(eq. 1)

Enable and Input UVLO

The NCP3284/A is enabled when the voltage at EN pin is higher than a summing voltage level of an internal threshold V_{EN_TH} and a hysteresis. The hysteresis can be programmed by an external resistor R_{EN} connected to EN pin as shown in Figure 5. The high threshold V_{EN_H} in ENABLE signal is

 $V_{EN H} = V_{EN TH} + V_{EN HYS}$

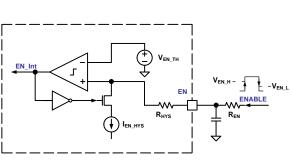


Figure 5. Enable and Hysteresis Programming

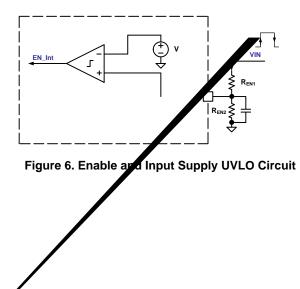
The low threshold $V_{EN \ L}$ in ENABLE signal is

$$V_{EN_L} = V_{EN_TH}$$
 (eq. 2)

The hysteresis V_{EN HYS} is

$$V_{\text{EN}_{\text{HYS}}} = I_{\text{EN}_{\text{HYS}}} \times (R_{\text{HYS}} + R_{\text{EN}})$$
 (eq. 3)

A UVLO function for input power supply can be implemented at EN pin. As shown in Figure 6, the UVLO threshold can be programmed by two external resistors. The low threshold V_{IN_L} in V_{IN} signal is

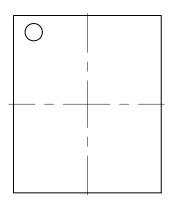

$$V_{IN_L} = \left(\frac{R_{EN1}}{R_{EN2}} + 1\right) \times V_{EN_TH}$$
 (eq. 4)

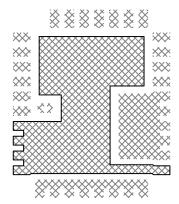
The high threshold V_{IN_H} in V_{IN} signal is

$$V_{IN_H} = V_{IN_L} + V_{IN_HYS}$$
 (eq. 5)

The hysteresis V_{IN_HYS} is

$$V_{IN_HYS} = I_{EN_HYS} \times \left(R_{HYS} \left(1 + \frac{R_{EN1}}{R_{EN2}} \right) + R_{EN1} \right)$$
 (eq. 6)


Thermal Shutdown (TSD)


The NCP3284/A has an internal thermal shutdown protection to protect the device from overheating in an extreme case that the die temperature exceeds 150° C. T_{SD} detection is activated when VCC and EN are valid. Once the thermal protection is triggered, the whole chip shuts down. If the temperature drops below 125° C, the system automatically recovers and a normal power–up sequence follows.

Power Good (PGOOD)

PGOOD is asserted in normal operation after soft start ends, and it is pulled low in protections and shutdown. The PGOOD pin is an open–drain pin and its internal pull–down control circuit is powered by VCC. To avoid an invalid PGOOD indication when VCC is not ready, it is recommended to have the external pull–up resistor at the PGOOD pin connected to VCC. If VCC is provided by an external source, it should be applied prior to VIN to avoid erroneous PGOOD glitches.

LAYOV27/UIDELINES

TOP VIEW

onsemi, , and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or incruit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi