

Figure 2. Block Diagram

PIN LIST AND DESCRIPTIONS (continued)

Pin No.	Symbol	Description		
19	PGND	Power Ground		
20	PGND	Power Ground		
21	PGND	Power Ground		
22	PGND	Power Ground		
23	PGND	Power Ground		
24	PGND	Power Ground		
25	VIN	Conversion Supply Power Input		
26	VIN	Conversion Supply Power Input		
27	VIN	Conversion Supply Power Input		
28	VIN	Conversion Supply Power Input		
29	VIN	Conversion Supply Power Input		
30	VIN	Conversion Supply Power Input		
31	PGND	Power Ground		

PHASEF

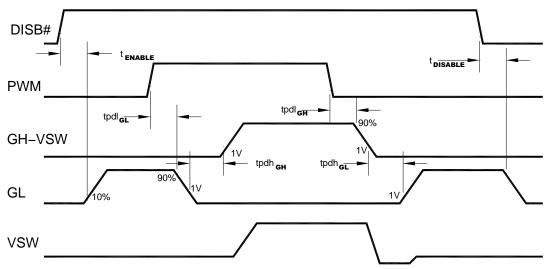
THERMAL INFORMATION

Rating	Symbol	Value	Unit
Thermal Resistance	JA	22	°C/W
	RΨ _{J–BT}	2	°C/W
	RΨ _{J–CT}	4	°C/W
Operating Junction Temperature Range (Note 2)	TJ	-40 to +150	°C
Operating Ambient Temperature Range		-40 to +125	°C
Maximum Storage Temperature Range	T _{STG}	-40 to +150	°C
Maximum Power Dissipation		10	W
Moisture Sensitivity Level	MSL	3	

The maximum package power dissipation must be observed.
 JESD 51–5 (1S2P Direct–Attach Method) with 0 LFM
 JESD 51–7 (1S2P Direct–Attach Method) with 0 LFM

RECOMMENDED OPERATING CONDITIONS

Parameter	Pin Name	Conditions	Min	Тур	Max	Unit
Supply Voltage Range	VCC, VCCD		4.5	5.0	5.5	V


Conversion Voltage

ELECTRICAL CHARACTERISTICS (continued) ($V_{VCC} = V_{VCCD} = 5.0 \text{ V}, V_{VIN} = 12 \text{ V}, V_{DISB\#} = 2.0 \text{ V}, C_{VCCD} = C_{VCC} = 0.1 \mu\text{F}$ unless specified otherwise) Min/Max values are valid for the temperature range $-40^{\circ}\text{C} \le T_A \le 125$

ELECTRICAL CHARACTERISTICS (continued) ($V_{VCC} = V_{VCCD} = 5.0 \text{ V}, V_{VIN} = 12 \text{ V}, V_{DISB\#} = 2.0 \text{ V}, C_{VCCD} = C_{VCC} = 0.1 \mu\text{F}$ unless specified otherwise) Min/Max values are valid for the temperature range $-40^{\circ}\text{C} \le T_A \le 125^{\circ}\text{C}$ unless noted otherwise, and are guaranteed by test, design or statistical correlation.

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
ZCD_EN INPUT						-
ZCD_EN Propagation Delay, Rising	T _{ZCD_EN,PD_R}	SMOD# = High, ZCD_EN = High to GL = 10%	-	40	45	ns
ZCD_EN Propagation Delay, Falling	T _{ZCD_EN,PD_F}	SMOD# = High, ZCD_EN = Low to GL = 90%	-	25	40	ns
ZCD FUNCTION		•	•	•		
Zero Cross Detect Threshold	Vzcd		-	-6.5	-	mV
ZCD Blanking + Debounce Time	t BLNK		-	330	-	ns
NON-OVERLAP DELAYS						-
Non-overlap Delay, Leading Edge	tpdhgн	GL Falling = 1 V to GH–VSW Rising = 1 V	-	13	-	ns
Non-overlap Delay, Trailing Edge	tpdhGL	GH–VSW Falling = 1 V to GL Rising = 1 V	-	12	-	ns
THERMAL WARNING & SHUTDOWN		•	•	•		
Thermal Warning Temperature	T _{THWN}	Temperature at Driver Die	-	150	-	°C
Thermal Warning Hysteresis	T _{THWN_HYS}		-	15	-	°C
Thermal Shutdown Temperature	T _{THDN}	Temperature at Driver Die	-	180	-	°C
Thermal Shutdown Hysteresis	T _{THDN_HYS}		-	25	-	°C
THWN Open Drain Current	I _{THWN}		-	-	5	mA
BOOSTSTRAP DIODE	•		•	•	•	•
Forward Voltage		Forward Bias Current = 2.0 mA	-	300	-	mV

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

Table 1. LOGIC TABLE

	INPUT TRUTH TABLE						
DISB#	PWM	SMOD# (Note 5)	ZCD_EN	GH	GL		
L	х						

If $V_{SMOD\#_LO} < SMOD\# < V_{SMOD\#_HI}$ (Mid–State), internal resistances will set undriven PWM pin voltage to Mid–State.

Disable Input (DISB#)

The DISB# pin is used to disable the GH to the High–Side FET to prevent power transfer. The pin has a pull–down resistance to force a disabled state when it is left unconnected. DISB# can be driven from the output of a logic device or set high with a pull–up resistance to VCC.

VCC Undervoltage Lockout

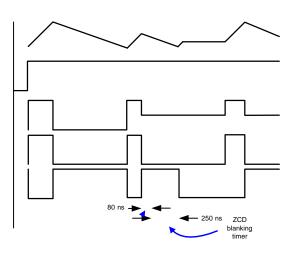
The VCC pin is monitored by an Undervoltage Lockout Circuit (UVLO). VCC voltage above the rising threshold enables the NCP81382.

UVLO	DISB#	Driver State
L	Х	Disabled (GH = GL = 0)
Н	L	Disabled ($GH = GL = 0$)
Н	Н	Enabled (See Table x)
Н	Open	Disabled ($GH = GL = 0$)

Table 2. UVLO/DISB# LOGIC TABLE

Inductor Current ZCD_EN WM GH GL B0 ns De-bounce timer ZCD timer ZCD to blanking timer

Figure 6. PWM Timing Diagram


Thermal Warning/Thermal Shutdown Output

The THWN pin is an open drain output. When the temperature of the driver exceeds T_{THWN} , the THWN pin will be pulled low indicating a thermal warning. At this point, the part continues to function normally. When the temperature drops $T_{THWN,HYS}$ below T_{THWN} , the THWN pin will go high. If the driver temperature exceeds T_{THDN} , the part will enter thermal shutdown and turn off both MOSFETs. Once the temperature falls $T_{THDN,HYS}$ below T_{THDN} , the part will resume normal operation.

Skip Mode Input (SMOD#)

The SMOD# tri-state input pin has an internal pull-up resistance to VCC. When driven high, the SMOD# pin enables the low side synchronous MOSFET to operate independently of the internal ZCD function. When the SMOD# pin is set low during the PWM cycle it disables the low side MOSFET to allow discontinuous mode operation.

The NCP81382 has the capability of internally connecting a resistor divider to the PWM pin. To engage this mode, SMOD# needs to be placed into mid-state. While in SMOD# mid-state, the IC logic is equivalent to SMOD# being in the high state.

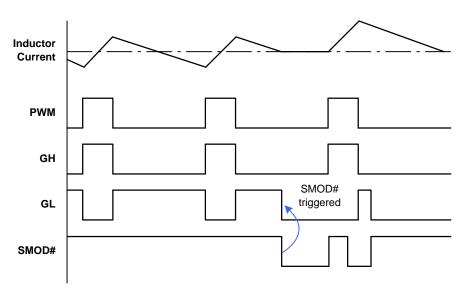
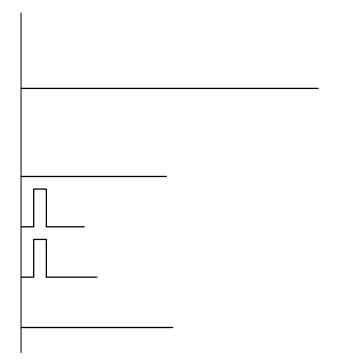



Figure 7. SMOD# Timing Diagram

NOTE: If the SMOD# input is driven low at any time after the GL has been driven high, the SMOD# Falling edge will trigger the GL to go low.

If the SMOD# input is driven low while the GH is high, the SMOD# input is ignored.

For Use with Controllers with 3–State PWM and No Zero Current Detection Capability:

PWM	SMOD#	ZCD_EN	GH	GL
н	Н	Н	ON	OFF
М	Н	Н	OFF	ZCD
L	Н	Н		

Table 3. LOGIC TABLE – 3–STATE PWM CONTROLLERS WITH NO ZCD

For Use with Controllers with 2-Level PWM and Zero Current Detection Capability:

PWM	SMOD#	ZCD_EN	GH	GL
Н	L	Х	ON	OFF
L	L	н	OFF	ON
L	L	L	OFF	OFF

Table 5. LOGIC TABLE – 2–STATE PWM CONTROLLERS WITH ZCD

This section describes operation with controllers that do not have 3–level PWM output capability but are capable of zero current detection during discontinuous conduction mode (DCM).

The SMOD# pin needs to be pulled low (below $V_{SMOD\#\ LO}).$

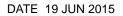
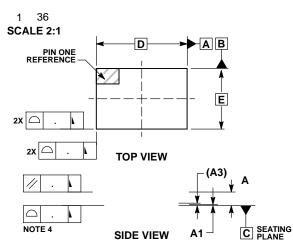

When PWM is high, GH will always be in the high state and GL will always be in the low state, regardless of the state ZCD_EN is in. When PWM is in the low state, the state of ZCD_EN determines whether the converter is placed into diode emulation mode. When the controller detects positive inductor current, ZCD_EN should be in the high state, allowing the LS FET to be on and conducting. Once the controller detects zero or negative current, ZCD_EN should be placed into the low state, turning off the LS FET. With the LS FET turned off, the body diode of the LS FET allows any positive current that may still be flowing to reach zero, but prevents the current from flowing in the negative direction.

Figure 11. Timing Diagram – 2-state PWM Controller, with ZCD

Recommended PCB Layout (viewed from top)

QFN36 6x4, 0.4P CASE 485DZ

ISSUE A


- NOTES:
 DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
 CONTROLLING DIMENSION: MILLIMETERS.
 DIMENSION & APPLIES TO PLATED TERMINAL AND IS MEASURED BETWEEN 0.15 AND 0.25 MM FROM THE TERMINAL TIP.
 COPLANARITY APPLIES TO THE EXPOSED PAD AS WELL AS THE TERMINALS.

	MILLIMETERS				
DIM	MIN	MAX			
Α	0.90	1.20			
A1	0.00	0.05			
A3	0.20	REF			
b	0.15	0.25			
D	6.00 BSC				
D2	4.95	5.05			

Е	4.00	BSC
E2	2.44	2.54

е	0.40 BSC		
G	0.52	0.62	

*For additional information on our Pb-Free strategy and soldering details, please download the

onsemi, , and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or incruit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi