AC coupled, the internal clamps are employed. The outputs can drive both AC and DC coupled 150 Ω loads.

It is designed to be compatible with most **Digital**nalog Converters (DAC) embedded in most video processors.

Features

- Three 6th Order High Definition 30 MHz Filter
- Internally Fixed Gain = 6 dB
- Transparent Input Clamping for Each Channel
- DC or AC Coupled Inputs
- DC or AC Coupled Outputs
- Integrated Level Shifter
- Operating Voltage +5 V
- Available in SOIC-8 Package
- These are Pb–Free Devices

Applications

- Digital Set-Top Box
- DVD and Video Players
- HDTV
- Video-On-Demand (VOD)

SOIC

PIN FUNCTION AND DESCRIPTION

Pin	Name	Туре	Description
1	IN1	Input	Video Input 1 for Video Signal featuring a frequency bandwidth compatible with High Definition Video (30 MHz) – Channel 1
2	IN2	Input	Video Input 2 for Video Signal featuring a frequency bandwidth compatible with High Definition Video (30 MHz) – Channel 2
3	IN3	Input	Video Input 3 for Video Signal featuring a frequency bandwidth compatible with High Definition Video (30 MHz) – Channel 3
4	VCC	Power	Device Power Supply Voltage: +5 V
5	GND	GND	Connected to Ground
6	OUT3	Output	HD Video Output 3 – Channel 3
7	OUT2	Output	HD Video Output 2 – Channel 2
8	OUT1	Output	HD Video Output 1 – Channel 1

ATTRIBUTES

Characteristics		Value	
ESD Human Body Model Machine Model	All Pins (Note 1) Pins 1 to 5 (Note 2) All Output Pins (Note 2)	8 kV 400 V 600 V	
Moisture Sensitivity (No	ote 3)	Level 1	

MAXIMUM RATINGS

Parameter	Symbol	Rating	Unit
Power Supply Voltages	V _{CC}	-0.35 ≤ V _{CC} ≤ 5.5	Vdc
Input Voltage Range	VI	$-0.3 \le V_{I} \le V_{CC}$	Vdc
Input Differential Voltage Range	V _{ID}	$V_{I} \leq V_{CC}$	Vdc
Output Current	I _O	50	mA
Maximum Junction Temperature (Note 4)	TJ	150	°C
Operating Ambient Temperature	T _A	-40 to +85	°C
Storage Temperature Range	T _{stg}	-60 to +150	°C
Power Dissipation	P_{D}	(See Graph)	mW
Thermal Resistance, Junction-to-Air	$R_{\theta JA}$	112.7	°C/W

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

Maximum Power Dissipation

The maximum power that can be safely dissipated is limited by the associated rise in junction temperature. For the plastic packages, the maximum safe junction temperature is 150°C. If the maximum is exceeded momentarily, proper circuit operation will be restored as soon as the die temperature is reduced. Leaving the device in the "overheated" condition for an extended period can result in device burnout. To ensure proper operation, it is important to observe the derating curves.

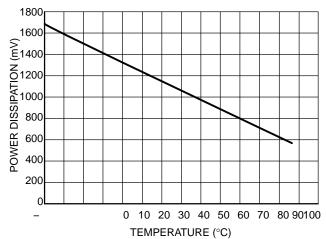


Figure 2. Power Dissipation vs Temperature

^{4.} Power dissipation must be considered to ensure maximum junction temperature (T_{,l}) is not exceeded.

TYPICAL CHARACTERISTICS

 T_{A} = 25°C, V_{CC} = 5 V, R_{source} = 37.5 Ω , 0.1 μF AC–Coupled Inputs, 220 μF AC–Coupled Outputs with 150 Ω

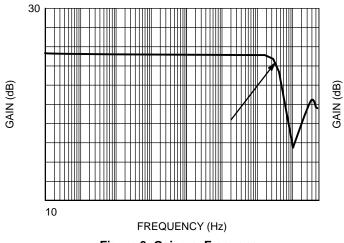


Figure 3. Gain vs. Frequency

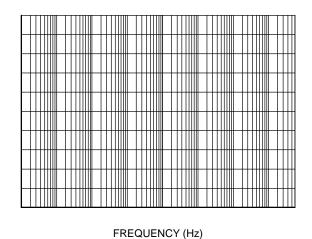
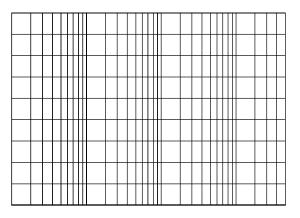



Figure 4. Attenuation

GAIN (dB)

FREQUENCY (Hz)

Figure 5. Flatness Bandwidth 0.1 dB

FREQUENCY (Hz)

Figure 6. PSRR vs. Frequency (No Bypass Capacitor)

Figure 7. Crosstalk0 0 9 245.76 303IS 1 041.52 0 cm 0 0 mB lhS

TYPICAL CHARACTERISTICS

 T_A = 25°C, V_{CC} = 5 V, R_{source} = 37.5 Ω , 0.1 μF AC–Coupled Inputs, 220 μF AC–Coupled Outputs with 150 Ω

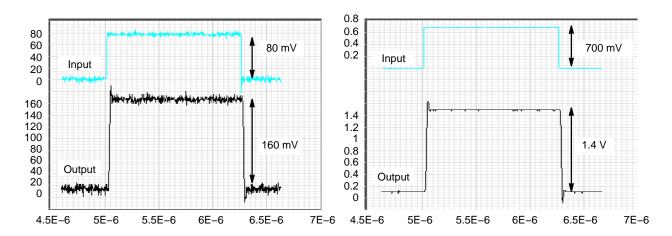


Figure 8. Small Signal Step Response $T_r = T_f = 1 \text{ ns}$

Figure 9. Large Signal Step Response $T_r = T_f = 1.0 \text{ ns}$

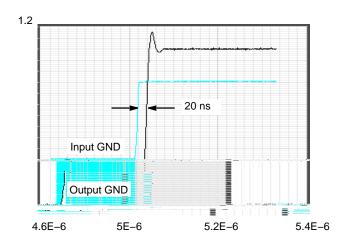


Figure 10. Propagation Delay vs. Time

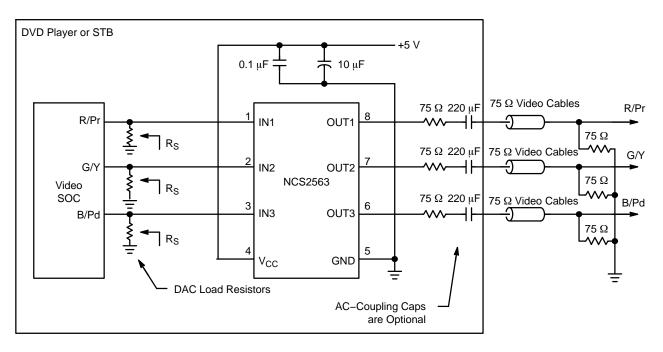
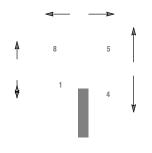
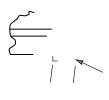




Figure 12. Typical Application Circuit

SOIC 8 NB CASE 751-07 ISSUE AK

DATE 16 FEB 2011

SEATING PLANE

