Bluetooth[®] 5.2 Radio System-on-Chip (SoC) for Automotive

NCV-RSL10

Introduction

A member of the RSL10 product family, NCV–RSL10 brings the industry's lowest power Bluetooth Low Energy technology to the automotive industry. NCV–RSL10 helps enable advanced new functionality including keyless entry using a fob or smartphone, active safety and diagnostic alerts, and enhanced infotainment controls while maximizing energy efficiency.

The Bluetooth 5.2 certified radio SoC supports 2 Mbps data rates, twice the speed possible with previous Bluetooth generations. Specially designed and ques,Sy

FEATURES

- Arm Cortex–M3 Processor: A 32–bit core for real–time applications, specifically developed to enable high–performance low–cost platforms for a broad range of low–power applications.
- LPDSP32: A 32-bit Dual Harvard DSP core that efficiently supports custom crypto graphic algorithms or other signal processing that require significant number crunching.
- **Radio Frequency Front–End:** Based on a 2.4 GHz RF transceiver, the RFFE implements the physical layer of the Bluetooth Low Energy technology standard and other proprietary or custom protocols.
- **Protocol Baseband Hardware:** Bluetooth 5.2 certified and includes support for a 2 Mbps RF link and custom protocol options. The RSL10 baseband stack is supplemented by support structures that enable implementation of **onsemi** and customer designed custom protocols.
- Highly–Integrated SoC: The dual–core architecture is complemented by high–efficiency power management units, oscillators, flash and RAM memories, a DMA

Table 3. ELECTRICAL PERFORMANCE SPECIFICATIONS

Unless otherwise noted, the specifications mentioned in the table below are valid at 25°C for VBAT = VDDO = 3 V in DC–DC (buck) mode.

Description	Symbol	Conditions	Min	Тур	Max	Units
OVERALL						
Current consumption RX, $V_{BAT} = 3 V$	I _{VBAT}			0.9		mA
Current consumption TX, V _{BAT} = 3 V	I _{VBAT}			0.9		mA
Deep sleep current, example 1, V _{BAT} = 3 V	lds1	Wake up from wake up pin or DIO wake up.		25		nA
Deep sleep current, example 2, $V_{BAT} = 3 V$	lds2	Embedded 32 kHz oscillator running with interrupts from timer or external pin.		40		nA
Deep sleep current, example 3, V _{BAT} = 3 V	lds3	As Ids2 but with 8 kB RAM data retention.		100		nA
Standby Mode current, V _{BAT} = 3 V	Istb	Digital blocks and memories are not clocked and are powered at a reduced voltage.		17		μΑ
EEMBC ULPMark BENCHMARK,	CORE PROFIL	E				
ULPMark CP 3.0 V		Arm Cortex–M3 processor running from RAM, VBAT= 3.0 V, IAR C/C++ Compiler for ARM 8.20.1.14183		1090		ULP Mark
ULPMark CP 2.1 V		Arm Cortex–M3 processor running from RAM, VBAT= 2.1 V, IAR C/C++ Compiler for ARM 8.20.1.14183		1260		ULP Mark
EEMBC CoreMark BENCHMARK	for the Arm Co	rtex-M3 Processor and the LPDSP32 DS	Р			
Arm Cortex–M3 processor running from RAM		At 48 MHz SYSCLK. Using the IAR 8.10.1 C compiler, certified		159		Core Mark
LPDSP32 running from RAM		At 48 MHz SYSCLK Using the 2020.03 release of the Synopsys LPDSP32 C compiler		174		Core Mark
Arm Cortex–M3 processor and LPDSP32 running from RAM, VBAT = 3 V		At 48 MHz SYSCLK		284		Core Mark/ mA
Arm Cortex–M3 processor running CoreMark from RAM, VBAT = 3 V		At 48 MHz SYSCLK (processor consumption only)		12.3		μA/MHz
Arm Cortex–M3 processor running CoreMark from Flash, VBAT = 3 V		At 48 MHz SYSCLK (processor consumption only)		14.6		μA/MHz
LPDSP32 running CoreMark from RAM, VBAT = 3 V		At 48 MHz SYSCLK (processor consumption only)		8.2		μA/MHz

INTERNALLY GENERATED VDDC: Digital Block Supply Voltage

Supply voltage: operating range

Table 5.	VDDC Target	Trimming Voltag	e as a Function of	SYSCLK Frequency
----------	-------------	------------------------	--------------------	------------------

VDDC Voltage (V)	Maximum SYSCLK Frequency (MHz)	Restriction		
0.92	≤24	The ADC will be functional in low frequency mode and between 0 and 85°C only.		
1.00	≤ 24	Fully functional		
1.05	48	Fully functional		

NOTE: These are trimming targets at room/ATE temperature $25 \sim 30^{\circ}$ C.

Figure 2. RSL10 Application Diagram in Buck Mode

Figure 3. RSL10 Application Diagram in LDO Mode

Table 8. CHIP INTERFACE SPECIFICATIONS

Pad Name	Description	Power Domain	I/O	A/D	Pull	Pad #, QFN48

VBAT

Table 8. CHIP INTERFACE SPECIFICATIONS

		Power				Pad #,
Pad Name	Description	Domain	I/O	A/D	Pull	QFN48

ARCHITECTURE OVERVIEW

The architecture of the RSL10 chip is shown in Figure 4.

Figure 4. RSL10 Architecture

Arm Cortex-M3 Processor Subsystem

The Arm Cortex–M3 processor subsystem includes the Arm Cortex–M3 processor, which is the master processor of the RSL10 chip. It also contains the Bluetooth baseband controller, and all interfaces and other peripherals.

Arm Cortex-M3 Processor

The Arm Cortex–M3 processor is a state–of–the–art 32–bit core with embedded multiplier and ALU for handling

DATE 18 JAN 2019

48X L

----|----48X b

GENERIC MARKING DIAGRAM*

1 O XXXXXXXXX XXXXXXXXX AWLYYWWG

 $\begin{array}{lll} A & = Assembly \mbox{ Location} \\ WL & = Wafer \mbox{ Lot} \\ YY & = Year \\ WW & = Work \mbox{ Week} \\ G & = Pb-Free \mbox{ Package} \end{array}$

*This information is generic. Please refer to device data sheet for actual part marking. Pb–Free indicator, "G" or microdot "■", may or may not be present. Some products may not follow the Generic Marking.

onsemi, , and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or incruit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi