
TYPICAL APPLICATION SCHEMATIC

The application schematic below shows typical connections for applications with low axis counts and/or with software SPI implementation. For applications with many stepper motor drivers, some "minimal wiring" examples are shown at the last sections of this datasheet.

PACKAGE AND PIN DESCRIPTION

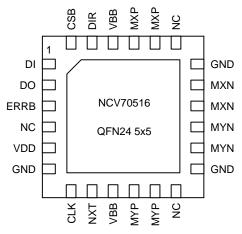
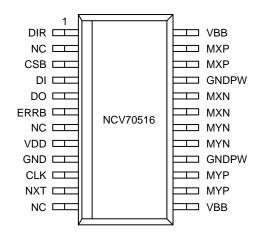


Figure 3. Pin Connections – QFN24



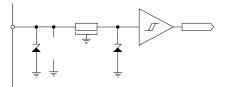

Figure 4. Pin Connections – SSOP24

Table 2. PIN DESCRIPTION

Pin No. QFN24 5x5	Pin No. SSOP24 NB EP	Pin Name	Description	I/О Туре
1	4	DI	SPI data input	Digital Input
2	5	DO	SPI data output	Digital Output
3	6	ERRB	Error Output (Open Drain)	Digital Output
4, 12, 19	2, 7, 12	NC	Not connected	
5	8	VDD	Internal supply (needs external decoupling capacitor)	Supply
6	9	GND	Ground	Supply
7	10	CLK	SPI clock input	Digital Input
8	11	NXT	Next micro step input	Digital Input
9, 22	13, 24	VBB	Battery voltage supply	Supply
10, 11	14, 15	MOTYP	Positive end of phase Y coil	Driver output
13, 18	16, 21	GNDPW	Ground	Supply
14, 15	17, 18	MOTYN	Negative end of phase Y coil	Driver output
16, 17	19, 20	MOTXN	Negative end of phase X coil	Driver output
20, 21	22, 23			-

EQUIVALENT SCHEMATICS

The following figure gives the equivalent schematics of the user relevant inputs and outputs. The diagrams are simplified representations of the circuits used.

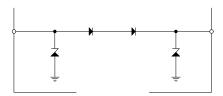


Figure 5. Input and Output Equivalent Diagrams

ELECTRICAL CHARACTERISTICS

DC PARAMETERS

The DC parameters are guaranteed over junction temperature from -40 to 145°C and VBB in the operating range from 6 to 29 V, unless otherwise specified. Convention: currents flowing into the circuit are defined as positive.

Table 6. DC PARAMETERS

Symbol	Pin(s)	Parameter	Test Conditions	Min	Тур	Max	Unit		
MOTORDRIVER									
I _{MS} - max,Peak	MOTXP MOTXN	Max current through motor coil in normal operation	V _{BB} = 14 V		800		mA		
I _{MS} - boost,Peak	MOTYP MOTYN	Max current during booster function	$V_{BB} = 14 \text{ V}, \text{ T}_{j} = 45^{\circ}\text{C}$		1100		mA		
I _{MSabs}		Absolute error on coil current	V _{BB} = 14 V, T _j = 145°C I _{MSmax,Peak} = 800 mA and 100 mA	10		10	%		
I _{MSrel}	C	Matching of X & Y coil currents	$V_{BB} = 14 V$ $I_{MSmax,Peak} = 800 mA$ and 100 mA	7		7	%		
R _{DS(on)}		On resistance of High side + Low side Driver at the highest current range	T _j = 145°C			2.4	Ω		

LOGIC INPUTS

V_{inL}

Ct4t9jET107.943 4961792 .90709 23.291 23f107.943 496.926 48.52 .90704 7efBT8 0 0 8 156.8693 514796211Tm-.0015 Tc(DSLogic I siin

AC PARAMETERS

The AC parameters are guaranteed over junction temperature from -40 to 145°C and VBB in the operating range from 6 to 29 V, unless otherwise specified.

Table 7. AC PARAMETERS

Symbol	Pin(s)	Parameter	Test Conditions	Min	Тур	Max	Unit
INTERNAL OSCILLATOR							
f _{osc}		Frequency of internal oscillator	V _{BB} = 14 V	9	10	11	MHz

MOTORDRIVER

f _{pwm}	MOTxx	PWM frequency	(Note 25)		28.4		kHz
fjit_depth		PWM jitter modulation depth	SPI bit PWMJen = 1 (Note 25)			20	%
t _{OCdet}		Open coil detection with PWM=100% (Note 25)	SPI bit OpenDet[1:0] = 00 5 SPI bit OpenDet [1:0] = 01SPI bit PWMJen = 1				

Table 8. SPI INTERFACE

Symbol	Parameter	Min	Тур	Max	Unit
t _{CSS}	CSB setup time (Note 26)	0.5			μs
t _{CSH}	CSB hold time	0.5			μs
t _{CS}	CSB high time	-			

Translator Position

The translator position can be read and set by the SPI register \langle MSP[5:0] \rangle . This is a 6–bit number equivalent to the 1/16th micro–step from Table 9: Translator Table. The translator position is updated immediately following a next micro–step trigger (see below).

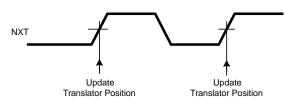


Figure 10. Translator Position Timing Diagram

Direction

The direction of rotation is selected by means of input pin DIR and its "polarity bit" <DIRP> (SPI register). The polarity bit <DIRP> allows changing the direction of rotation by means of only SPI commands instead of the dedicated input pin.

Direction = DIR-pin EXOR < DIRP>

Positive direction of rotation means counter-clockwise rotation of electrical vector Ix + Iy. Also when the motor is

To enable the motor again after reading out of the status flags, <MOTEN>=1 has to be written.

Notes:

- 1. Successive reading of the <SHRTij> flags and re-enabling the motor in case of a short circuit condition may lead to damage of the drivers.
- 2. Example: SHRTXPT means: Short at X coil, Positive output pin, Top transistor.
- 3. In case of the short from any stepper motor pin to the top side during switching event from bottom to top on motor pin, the flag "short to bottom side" is set instead of the expected "short to top side" flag.

Step Loss Detection

When Next pulse is applied (by means of NXT pin or <NXTP> bit via SPI) or <MSP> register is written during error condition, the step loss bit <SL> is set.

<SL> = (<UV> OR <TSD> OR <ELDEF>) AND ((NXT OR <NXTP>) OR <MSP> write)

Step loss bit <SL> is cleared after read out.

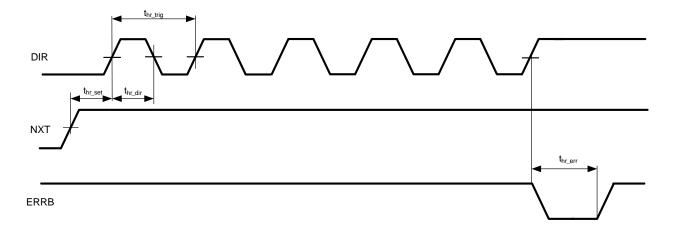


Figure 15. SPI Daisy Chain Data Shift Between

SPI Control Registers (CR) All SPI control registers have Read/Write access.

Table 12. SPI CONTROL REGISTERS (CR)

5-bit Address	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Default after Res.
00h	NOP	NOP	NOP	NOP	NOP	NOP	NOP	NOP	NOP	NOP	00 0000 0000
01h (CR1)	NotUsed	NXTP	MOTEN	DIRP	IBOOST	ACTBR	IMOT3	IMOT2	IMOT1	IMOT0	00 0000 0000
02h (CR2)	NotUsed	PWMJen	OpenDet1	OpenDet0	OpenDis	OpenHiZ	SLP	SM2	SM1	SM0	00 1000 1000
03h (CR3)	NotUsed	NotUsed	NotUsed	NotUsed	NotUsed	NotUsed	NotUsed	NotUsed	NotUsed	NotUsed	00 0000 0000
04h (CR4)	NotUsed	NotUsed	NotUsed	NotUsed	MSP5	MSP4	MSP3	MSP2	MSP1	MSP0	00 0000 1000

Table 13. BIT DEFINITION

Symbol	MAP position	Description
NOP	Bits [9:0] – ADDR_0x00	NOP register (read/write operation ignored)
NXTP	Bit 8 – ADDR_0x01 (CR1)	Push button pin, generating next step in position table
MOTEN	Bit 7 – ADDR_0x01 (CR1)	Enables the H bridges (motor activated)
DIRP	•	

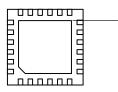
SPI Status Registers (SR)

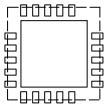
All SPI status registers have Read Only Access, with the odd parity on Bit8. Parity bit makes the numbers of 1 in the byte odd.

5–bit Address	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Default after Res.
05h (SR1)	0x0	PAR	SL, L	SPI,L	ELDEF, R*	TAMB, R	TSD,L	TW,R	UV, L	0x0	
06h (SR2)	0x0	PAR	0x0	0x0	HR,L	OPENX,L	SHRTXPB,L	SHRTXNB,L	SHRTXPT,L	SHRTXNT,L	
									SHRTYPT,L	SHRTYNT,L	

Table 14. SPI STATUS REGISTERS (SR)

APPLICATION EXAMPLES FOR MULTI-AXIS CONTROL


The wiring diagrams below show possible connections of multiple slaves to one microcontroller. In these examples,


PACKAGE DIMENSIONS

QFN24 5x5, 0.65P CASE 485CS ISSUE O

----4

SEATING

	308800	٦
E		Ξ
Ē		
Ц		Ĕ

onsemi, , and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or incruit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi