

Figure 1. NCV7357–0 Block Diagram

FUNCTIONAL DESCRIPTION

High speed CAN FD transceiver

NCV7357 implements high–speed physical layer CAN FD transceiver compatible with ISO11898–2, implementing following optional features or alternatives:

• Extended bus load range

Operating Modes

NCV7357 provides two modes of operation as illustrated in Table 2. These modes are selectable through pin S.

Table 2. OPERATING MODES

Pin S	Mode	Pin TxD	BUS	Pin RxD
Low	Normal	0	Dominant	0
Low Normal	normai	1	Recessive	1
High	Silent	х	Dominant (1)	0
		Х	Recessive	1

1. CAN BUS driven by another transceiver on the BUS

This virtual mode is entered as soon as the V_{CC} or V_{IO} undervoltage condition is detected. The internal logic is reset and the transceiver is disabled. CAN bus pins are kept floating. As soon as both V_{CC} and V_{IO} voltages rise above corresponding undervoltage recovery thresholds, the device proceeds to Normal or Silent mode, depending on S pin state.

state.

- Transmit dominant timeout, long
- Support of bit rates up to 5 Mbps
- Normal Bus biasing

^{2. &#}x27;X' = don't care **Power–off**

Figure 7). Pins TxD and S are biased internally should the input become disconnected. Pins TxD, S and RxD will be floating, preventing reverse supply should the VCC supply be removed.

V

Table 5. ELECTRICAL CHARACTERISTICS ($V_{CC} = 4.75 V$ to 5.25 V; $V_{IO} = 2.8 V$ to 5.5 V; for typical values $T_A = 25^{\circ}C$, for min/max values $T_J = -40$ to +150°C; $R_{LT} = 60 \Omega$, $C_{RxD} = 15 \text{ pF}$; unless otherwise noted. All voltages are referenced to GND (pin 2). Positive currents flow into the respective pin)

RECEIVER DATA OUTPUT (Pin RxD)

I _{ОН}	High level output current	Normal mode V _{RxD} = V _{CC} / V _{IO} – 0.4 V	8.0	3.0	1.0	mA
I _{OL}	Low level output current	$V_{RxD} = 0.4 V$	1.0	6.0	12	mA

CAN TRANSMITTER (PINS CANH AND CANL)

V _{o(dom)} (CANH)	Dominant output voltage at pin CANH	Normal mode; V_{TxD} = Low; t < t _{dom(TxD}); 50 Ω < R _{LT} < 65 Ω	2.75	3.5	4.5	V
V _{o(dom)} (CANL)	Dominant output voltage at pin CANL	Normal mode; V_{TxD} = Low; t < t _{dom(TxD)} ; 50 Ω < R _{LT} < 65 Ω	0.5	1.5	2.25	V
V _{o(rec)}	Recessive output voltage at pins CANH and CANL	Normal or Silent mode; V_{TxD} = High or V_{TxD} = Low and t > t _{dom(TxD)} ; no load	2.0	2.5	3.0	V
V _{o(dom)(diff)}	Differential dominant output voltage (V _{CANH} V _{CANL})	Normal mode; V_{TxD} = Low; t < t _{dom(TxD)} ; 45 Ω < R _{LT} < 65 Ω	1.5			

Table 5. ELECTRICAL CHARACTERISTICS (V_{CC} = 4.75 V to 5.25 V; V_{IO} = 2.8 V to 5.5 V; for typical values T_A = 25°C, for min/max values T_J = 40 to +150°C; R_{LT} = 60 Ω , C_{RxD} = 15 pF; unless otherwise noted. All voltages are referenced to GND (pin 2). Positive currents flow into the respective pin)

R _{i(cm)(m)}	Matching between pin CANH and pin CANL common mode input resistance	$V_{CANH} = V_{CANL} = +5 V$	1	0	+1	%
R _{i(diff)}	Differential input resistance	$\begin{array}{l} R_{i(diff)} = R_{i(cm)(CANH)} + \\ R_{i(cm)(CANL)} \\ 2 \; V \leq V_{CANH}, \; V_{CANL} \leq +7 \; V \end{array}$				

MEASUREMENTS SETUPS AND DEFINITIONS

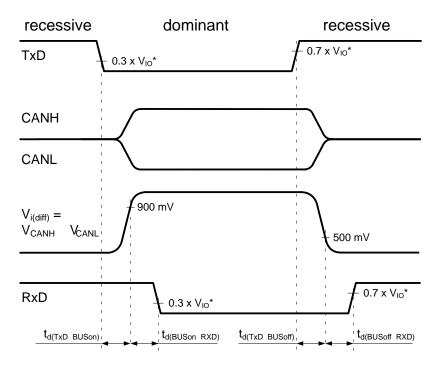
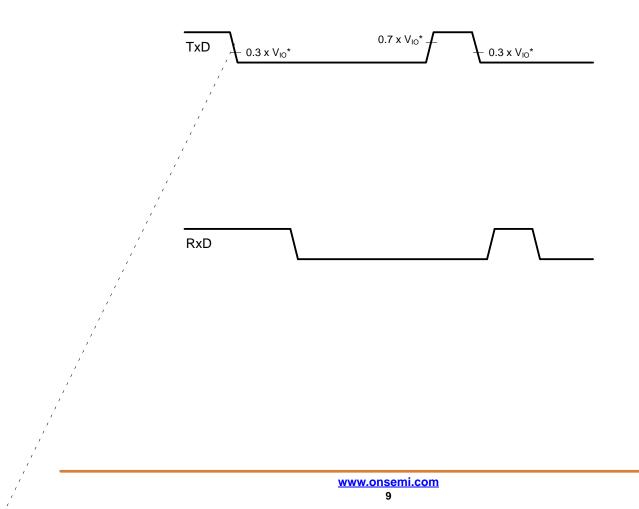



Figure 5. Transceiver Timing Diagram – Propagation Delays

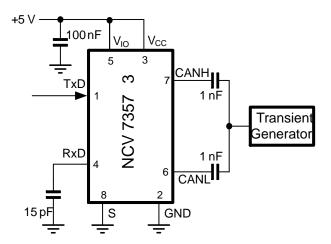


Figure 7. Test Circuit for Automotive Transients

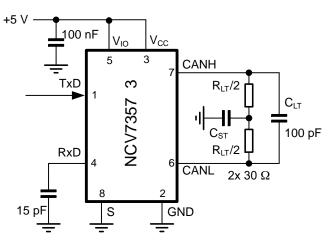


Figure 8. Test Circuit for Timing Characteristics

Table 6. ISO 11898–2:2016 Parameter Cross–Reference Table

ISO 11898–2:2016 Specification	
Parameter	
DOMINANT OUTPUT CHARACTERISTICS	
Single ended voltage on CAN_H	
Single ended voltage on CAN_L	
Differential voltage on normal bus load	
Differential voltage on effective resistance during arbitration	
Differential voltage on extended bus load range (optional)	
DRIVER SYMMETRY	
Driver symmetry	
DRIVER OUTPUT CURRENT	
Absolute current on CAN_H	Ι _C A
Absolute current on CAN_L	I _{CAN}
RECEIVER OUTPUT CHARACTERISTICS, BUS BIASING ACTIVE	
Single ended output voltage on CAN_H	V _{CAN}
Single ended output voltage on CAN_L	VCAN
Differential output voltage	V _{Diff}

www.onsemi.com

Received recessive bit width @ 5 Mbit / s	Δt_{Rec}	$\Delta t_{\sf rec}$		
MAXIMUM RATINGS OF V _{CAN_H} , V _{CAN_L} AND V _{DIFF}				
Maximum rating V _{Diff}	V _{Diff}	V _{CANH} CANL		
eral maximum rating V_{CAN_H} and V_{CAN_L} V_{CAN_H} V_{CAN_H} V_{CAN_H} V_{CAN_H} V_{CAN_H}		V _{CANH} V _{CANL}		
Optional: Extended maximum rating $V_{\mbox{CAN}\mbox{-}\mbox{H}}$ and $V_{\mbox{CAN}\mbox{-}\mbox{L}}$	V _{CAN_H} V _{CAN_L}	NA		
MAXIMUM LEAKAGE CURRENTS ON CAN_H AND CAN_L, UNPOWERED				
Leakage current on CAN_H, CAN_L	I _{CAN_H} , I _{CAN_L}	I _{LEAK(off)}		

DATE 02 JUL 2021

A

GENERIC MARKING DIAGRAM*

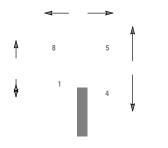
<--D2--►

1	o _{xxxxxx}
	XXXXXX
	ALYW=
	-

XXXXXX = Specific Device Code

- A = Assembly Location
- L = Wafer Lot

•


- Y = Year
- W = Work Week
 - = Pb-Free Package

(Note: Microdot may be in either location)

*This information is generic. Please refer to device data sheet for actual part marking. Pb–Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking.

DATE 16 FEB 2011

SEATING PLANE

onsemi, , and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or incruit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi