

ORDERING INFORMATION

Device	Packag	e	Shipping [†]
NCV7450DB0R2G	TSSOP16	-EP	4000 / Tape &
	(Pb–Fre	e)	Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

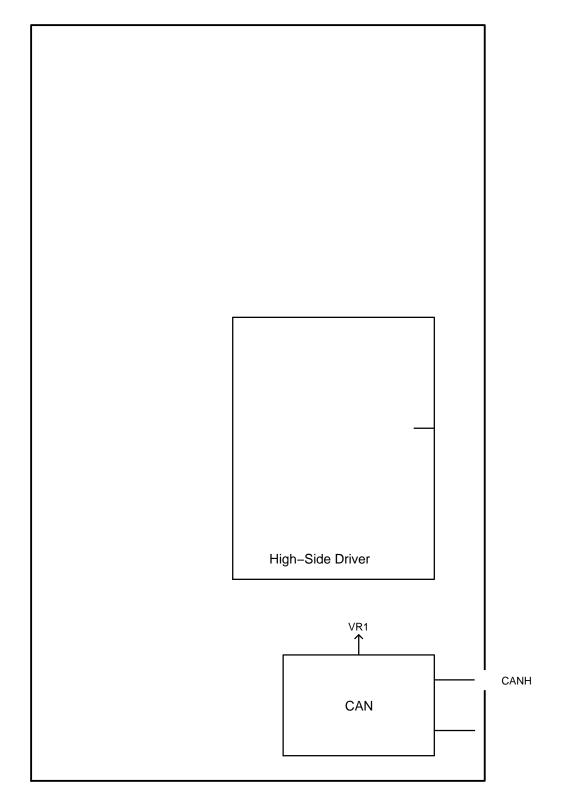
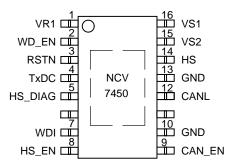



Figure 2. Block Diagram

Symbol	Rating	Min	Max	Unit
VS1	Functional supply voltage	5	28	V
VSI	Supply voltage for valid parameter specification	6	18	V
VS2	Functional supply voltage	4.3	24	V
V52	Supply voltage for valid parameter specification	6	18	V
VR1	VR1 LDO output voltage	4.9	5.1	V
VdigIO	Digital inputs/outputs voltage	0	VR1	V
HS	High-side driver voltage	0	VS2	V
CANH, CANL	CAN bus pins voltage	-40	40	V
TJ	Junction Temperature	-40	150	°C
T _A	Ambient Temperature	-40	125	°C

Table 4. RECOMMENDED OPERATING RANGES

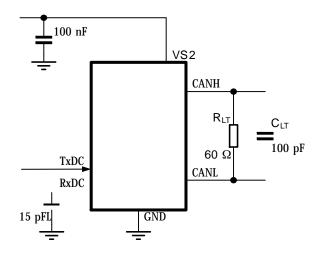
Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

Table 5. ELECTRICAL CHARACTERISTICS (6 V \leq Vs1 = Vs2 \leq 18 V; -40°C \leq Tj \leq 150°C; unless otherwise specified.)

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
DIGITAL OUTPUT R	STN					
VoutL_RSTN	Low-level output voltage, low	VR1 > 4.7 V, I(RSTN) = 0.7 mA	-	-	0.4	V
	VR1/VS1	VR1 > 2 V, VS1 < VR1, I(RSTN) = 0.1 mA	-	-	0.4	
		VS1 > 2 V, I(RSTN) = 0.3 mA	-	-	0.4	
Rpullup_RSTN	Internal pull-up resistor to VR1		5.0	10	19	kΩ

DIGITAL INPUTS TxDC, CAN_EN, WD_EN, HS_EN, WDI

VinL_pinx	Low-level input voltage (logical "Low")	0	_	0.8	V
VinH_pinx	High–level input voltage (logical "High")	2.0	-	VR1	


、		
.)		
Тур	Max	Unit
Ι	+5.0	mA
0	+5.0	μΑ
2.5	3.0	V
2.5	3.0	V
0	0.1	V
0	0.1	V
0	0.2	V
3.5	4.5	V
1.5	2.25	V
	1.1	VR1

2.25 3.0 V 94Ry"L I=9ï•p'\$ÃaU0I ®•ĐÄ 4:Sq1R‰ 7•y€ € Ci

Table 6. ELECTRICAL CHARACTERISTICS (CONTINUED)

(VR1 = 4.75 V to 5.25 V; T_J = -40°C to +150°C; R_{LT} = 60 Ω , C_{LT} = 100 pF, C_1 not used unless specified otherwise.)

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
CAN BUS LINES (Pins CANH and CANL)					
R _{i(cm)} (CANL)	Common-mode input resistance at pin CANL	$-2 V \le V_{CANH}$				

FUNCTIONAL DESCRIPTION

Supply Concept

The device has two independent supply pins VS1 and VS2. While VR1 regulator and logic control are supplied from VS1, High side driver is supplied from VS2. Both supply lines have to be properly decoupled by filtration capacitors close to the device pins.

As long as $VS1 < VS_POR$ level, all the blocks are in power down mode.

VR1 Low-drop Regulator

VR1 is a low drop output regulator providing 5 V voltage derived

HS Driver

HS high side driver is intended to drive an external load. Its state is directly controlled via HS_EN pin and diagnostics are flagged on HS_DIAG pin (see Table 7).

When the driver is enabled (HS_EN = High), it is protected against an excessive current and temperature and diagnosed on Underload condition.

In case the HS driver is controlled by a PWM signal through HS_EN with very low duty cycle, the diagnostic

features are limited by td_oc_HS in case of an overcurrent and $(VS2 / dVout_HS) + td_uld_HS$ in case of an underload.

The HS driver is designed to drive resistive loads. Therefore only a limited clamping energy (W < 1 mJ) can be dissipated by the device. For inductive loads (L > 100 μ H) an external freewheeling diode connected between GND and the HS pin is required.

Table 7.	HS	Driver	Diagnostics
----------	----	--------	-------------

Event	HS_EN	Failure condition	HS status	HS_DIAG	Recovery condition	
Normal aparation (no failure)	Low	-	Off	High	-	
Normal operation (no failure)	High	-	On	High	-	
Overcurrent	High	I(HS) > <i>loc_HS</i>	Off	Low	HS_EN = Low	
Underload	Lliab		0.2	Low		
Short-to-battery	High	I(HS) < <i>luld_HS</i>	On	Low	I(HS) > <i>luld_HS</i>	
Over-temperature	High	Tj > <i>T</i> sd1	Off	Low	Tj < Tsd1_off	
	•	•		•	•	

VS2 Overvoltage

In case the watchdog is not triggered before the timeout or open window elapses (Figure 11, Figure 12), or trigger is sent within the closed window (Figure 13), RSTN signal is generated and then watchdog restarted in the timeout mode again.

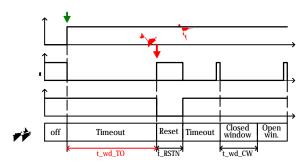


Figure 11. Missed watchdog in Timeout mode

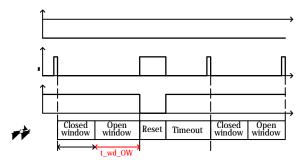
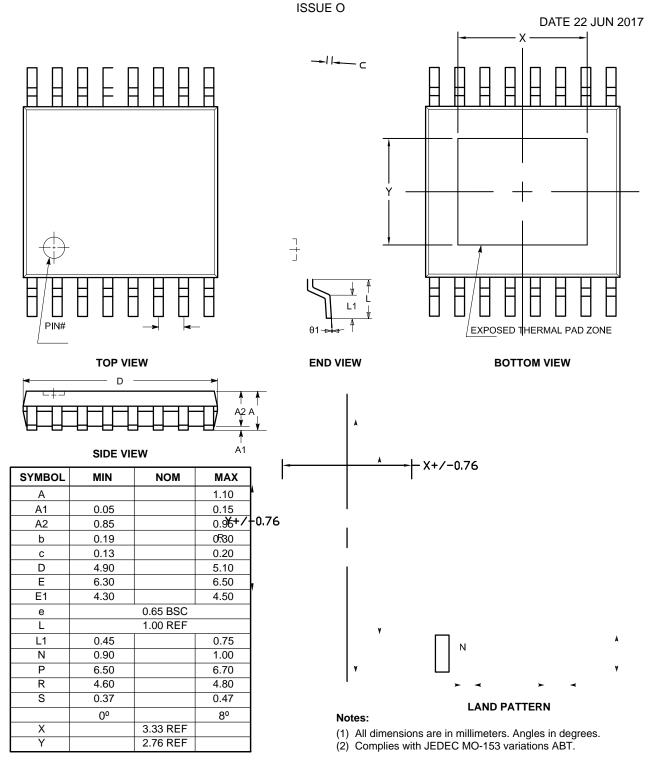


Figure 12. Missed watchdog in Window mode

Table 8. ISO11898–2:2016 PARAMETER CROSS-REFERENCE TABLE

ISO 11898–2:2016 Specification	NCV7450 Datasheet	
Parameter	Notation	Symbol
DOMINANT OUTPUT CHARACTERISTICS		
Single ended voltage on CAN_H	V _{CAN_H}	V _{o(dom)} (CANH)
Single ended voltage on CAN_L	V _{CAN_L}	V _{o(dom)(CANL)}
Differential voltage on normal bus load	V _{Diff}	V _{o(dom)(diff)}
Differential voltage on effective resistance during arbitration	V _{Diff}	V _{o(dom)(diff)_arb}

Optional: Differential voltage on extended bus load range


Table 8. ISO11898-2:2016 PARAMETER CROSS-REFERENCE TABLE

ISO 11898–2:2016 Specification	NCV7450 Datasheet				
Parameter	Notation	Symbol			
OPTIONAL IMPLEMENTATION DATA SIGNAL TIMING REQUIREMENTS for use with bit rates above 2 Mbit/s and up to 5 Mbit/s					
Transmitted recessive bit width @ 5 Mbit/s	t _{Bit(Bus)}	t _{Bit(Vi(diff))}			
Transmitted recessive bit width @ 5 Mbit / s	t _{Bit(RXD)}	t _{Bit(RxD)}			
Received recessive bit width @ 5 Mbit / s	Δt_{Rec}	Δt_{Rec}			
MAXIMUM RATINGS OF V _{CAN_H} , V _{CAN_L} AND V _{DIFF}					
Maximum rating V _{Diff}	V _{Diff}	Vmax_diff			
General maximum rating $V_{\mbox{CAN}\mbox{-}\mbox{H}}$ and $V_{\mbox{CAN}\mbox{-}\mbox{L}}$	V _{CAN_H} V _{CAN_L}	V _{CANH} V _{CANL}			
Optional: Extended maximum rating $V_{\mbox{CAN}_\mbox{H}}$ and $V_{\mbox{CAN}_\mbox{L}}$	V _{CAN_H} V _{CAN_L}	NA			
MAXIMUM LEAKAGE CURRENTS ON CAN_H AND CAN_L, UNPOWERED					
Leakage current on CAN_H, CAN_L	I _{CAN_H} , I _{CAN_L}	lLi			
BUS BIASING CONTROL TIMINGS					
CAN activity filter time, long	t _{Filter}	NA			
CAN activity filter time, short	t _{Filter}	t _{wake_filt}			
Optional: Wake-up timeout, short	t _{Wake}	t _{wake_to}			
Optional: Wake-up timeout, long	t _{Wake}	t _{wake_to}			
Timeout for bus inactivity (Required for selective wake-up implementation only)	t _{Silence}	NA			
Bus Bias reaction time (Required for selective wake-up implementation only)	t _{Bias}	NA			

MECHANICAL CASE OUTLINE PACKAGE DIMENSIONS

TSSOP16, 4.4x5 EXPOSED PAD CASE 948BV

TM

onsemi, , and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or incruit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi