# e '





 $\begin{array}{l} \textbf{ELECTRICAL CHARACTERISTICS} \hspace{0.1cm} (\text{continued}) \\ 4.5 \hspace{0.1cm} \text{V} < V_{CC} < 5.25 \hspace{0.1cm} \text{V}, 8 \hspace{0.1cm} \text{V} < Vs < 18 \hspace{0.1cm} \text{V}, -40^{\circ}\text{C} < \text{T}_{J} < 150^{\circ}\text{C}; \hspace{0.1cm} \text{unless otherwise noted}. \end{array}$ 

| Symbol          | Parameter                                                                                | Test Conditions                                                                                              | Min  | Тур | Max        | Unit |
|-----------------|------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|------|-----|------------|------|
| MIRROR COMMON   | I OUTPUT (X/Y, FOLD) OUT1                                                                |                                                                                                              |      |     |            |      |
| Dan avita       |                                                                                          | $T_{J} = 25^{\circ}C$ , lout1 = ±1.5 A                                                                       |      | 0.3 |            |      |
| Ron_out1        | On-resistance HS or LS                                                                   | T <sub>J</sub> = 125°C, lout1 = ±1.5 A                                                                       |      |     | 0.64       | Ω    |
| loc1_hs         | Overcurrent threshold HS                                                                 |                                                                                                              | -5   |     | -3.55      | Α    |
| loc1_ls         | Overcurrent threshold LS                                                                 |                                                                                                              | 3.55 |     | 5          | А    |
| Vlim1           | Vds voltage limitation HS or LS                                                          |                                                                                                              | 2    |     | 3          | V    |
| luld1_hs        | Underload detection threshold HS                                                         |                                                                                                              | -80  |     | -5         | mA   |
| luld1_ls        | Underload detection threshold LS                                                         |                                                                                                              | 10   |     | 80         | mA   |
| td_HS1(on)      | Output delay time, HS<br>Driver on                                                       | Time from CSB going high to                                                                                  |      | 2.5 | 12         | μs   |
| td_HS1(off)     | Output delay time, HS<br>Driver off                                                      | V(OUT1) = 0.1 · Ṽs / 0̃.9 · Ṽs (on/off)                                                                      |      | 3   | 12         | μs   |
| td_LS1(on)      | Output delay time, LS<br>Driver on                                                       | Time from CSB going low to                                                                                   |      | 1   | 12         | μS   |
| td_LS1(off)     | Output delay time, LS<br>Driver off                                                      | V(OUT1) = 0.9·Vs / 0.1·Vs (on/off)                                                                           |      | 1.5 | 12         | μs   |
| tdLH1           | Cross conduction<br>protection time,<br>low-to-high transition<br>including LS slew-rate |                                                                                                              |      | 0.5 | 22         | μs   |
| tdHL1           | Cross conduction<br>protection time,<br>high-to-low transition<br>including HS slew-rate |                                                                                                              |      | 5.5 | 22         | μs   |
| lleak_act_hs1   | Output HS leakage current,<br>Active mode                                                | V(OUT1) = 0 V                                                                                                | -40  | -16 |            | μΑ   |
| lleak_act_ls1   | Output pull-down current,<br>Active mode                                                 | V(OUT1) = VS                                                                                                 |      | 100 | 160        | μΑ   |
| lleak_stdby_hs1 | Output HS leakage current,<br>Standby mode                                               | V(OUT1) = 0 V                                                                                                | -5   |     |            | μΑ   |
| lleak_stdby_ls1 | Output pull-down current,<br>Standby mode                                                | $ \begin{array}{l} V(OUT1) = VS,  T_J \ \geq 25^\circ C \\ V(OUT1) = VS,  T_J \ < \ 25^\circ C \end{array} $ |      | 80  | 120<br>175 | μΑ   |
| td_uld1         | Underload blanking delay                                                                 |                                                                                                              | 430  |     | 610        | μs   |
| td_old1         | Overload shutdown<br>blanking delay                                                      |                                                                                                              | 5    |     | 25         | μs   |
| frec1L          | Recovery frequency, slow recovery mode                                                   | CONTROL_3.OCRF = 0                                                                                           | 1.3  |     | 2.1        | kHz  |
| frec1H          | Recovery frequency, fast recovery mode                                                   | CONTROL_3.0CRF = 1                                                                                           | 2.6  |     | 4.2        | kHz  |
| dVout1          | Slew rate of HS driver                                                                   | Vs = $13.5$ V, Rload = $16 \Omega$ to GND                                                                    | 1    | 2   | 3          | V/µs |

 $\begin{array}{l} \textbf{ELECTRICAL CHARACTERISTICS} \hspace{0.1 cm} (\text{continued}) \\ 4.5 \hspace{0.1 cm} V < V_{CC} < 5.25 \hspace{0.1 cm} V, \hspace{0.1 cm} 8 \hspace{0.1 cm} V < Vs < 18 \hspace{0.1 cm} V, \hspace{0.1 cm} -40^{\circ}C < T_J < 150^{\circ}C; \hspace{0.1 cm} \text{unless otherwise noted.} \end{array}$ 

| Symbol          | Parameter                                 | Test Conditions                           | Min   | Тур | Max   | Unit |  |  |  |
|-----------------|-------------------------------------------|-------------------------------------------|-------|-----|-------|------|--|--|--|
| MIRROR X/Y POSI | MIRROR X/Y POSITIONING OUTPUTS OUT2, OUT3 |                                           |       |     |       |      |  |  |  |
| Bop out? ?      |                                           | $T_J = 25^{\circ}C$ , lout2,3 = ±0.5 A    |       | 1.6 |       | Ω    |  |  |  |
| Ron_outz,5      | On-resistance HS of LS                    | $T_{J} = 125^{\circ}C$ , lout2,3 = ±0.5 A |       |     | 3.4   | Ω    |  |  |  |
| loc2,3_hs       | Overcurrent threshold HS                  |                                           | -1.25 |     | -0.75 | А    |  |  |  |
| loc2,3_ls       | Overcurrent threshold LS                  |                                           | 0.75  |     | 1.25  | А    |  |  |  |
| Vlim2,3         | Vds voTm2,3                               |                                           |       |     |       |      |  |  |  |

 $\begin{array}{l} \textbf{ELECTRICAL CHARACTERISTICS} \hspace{0.1cm} (\text{continued}) \\ 4.5 \hspace{0.1cm} \text{V} < V_{CC} < 5.25 \hspace{0.1cm} \text{V}, 8 \hspace{0.1cm} \text{V} < Vs < 18 \hspace{0.1cm} \text{V}, -40^{\circ}\text{C} < \text{T}_{J} < 150^{\circ}\text{C}; \hspace{0.1cm} \text{unless otherwise noted}. \end{array}$ 

| Symbol          | Parameter                                                                                | Test Conditions                                                      | Min  | Тур  | Max | Unit |  |  |
|-----------------|------------------------------------------------------------------------------------------|----------------------------------------------------------------------|------|------|-----|------|--|--|
| DOOR LOCK OUTP  | DOOR LOCK OUTPUTS OUT4, OUT5                                                             |                                                                      |      |      |     |      |  |  |
| Den aut 15      |                                                                                          | $T_J = 25^{\circ}C$ , lout4,5 = ±3 A                                 |      | 0.15 |     | Ω    |  |  |
| Ron_out4,5      | On-resistance HS or LS                                                                   | $T_{J} = 125^{\circ}C$ , lout4,5 = ±3 A                              |      |      | 0.3 | Ω    |  |  |
| loc4,5_hs       | Overcurrent threshold HS                                                                 |                                                                      | -10  |      | -6  | А    |  |  |
| loc4,5_ls       | Overcurrent threshold LS                                                                 |                                                                      | 6    |      | 10  | Α    |  |  |
| Vlim4,5         | Vds voltage limitation HS or LS                                                          |                                                                      | 2    |      | 3   | V    |  |  |
| luld4,5_hs      | Underload detection threshold HS                                                         |                                                                      | -300 |      | -60 | mA   |  |  |
| luld4,5_ls      | Underload detection threshold LS                                                         |                                                                      | 60   |      | 300 | mA   |  |  |
| td_HS4,5 (on)   | Output delay time, HS<br>Driver on                                                       | Time from CSB going high to $V(O 174.5) = 0.1 V(s/0.9 V(s/0.0))$     |      | 2.5  | 12  | μs   |  |  |
| td_HS4,5 (off)  | Output delay time, HS<br>Driver off                                                      | off) $(0.014, 3) = 0.148370.9488 (017)$                              |      | 3    | 12  | μs   |  |  |
| td_LS4,5 (on)   | Output delay time, LS<br>Driver on                                                       | Time from CSB going low to $V(O   T4.5) = 0.9 V(s / 0.1 V(s / 0.1))$ |      | 1    | 12  | μs   |  |  |
| td_LS4,5 (off)  | Output delay time, LS<br>Driver off                                                      | off)                                                                 |      | 1.5  | 12  | μs   |  |  |
| tdLH4,5         | Cross conduction<br>protection time,<br>low-to-high transition<br>including LS slew-rate |                                                                      |      | 0.5  | 22  | μs   |  |  |
| tdHL4,5         | Cross conduction<br>protection time,<br>high-to-low transition<br>including HS slew-rate |                                                                      |      | 5.5  | 22  | μs   |  |  |
| lleak_act_hs4,5 | Output HS leakage current,<br>Active mode                                                |                                                                      | -    | -    | -   | -    |  |  |

 $\begin{array}{l} \textbf{ELECTRICAL CHARACTERISTICS} \hspace{0.1 cm} (\text{continued}) \\ 4.5 \hspace{0.1 cm} V < V_{CC} < 5.25 \hspace{0.1 cm} V, \hspace{0.1 cm} 8 \hspace{0.1 cm} V < Vs < 18 \hspace{0.1 cm} V, \hspace{0.1 cm} -40^{\circ}C < T_J < 150^{\circ}C; \hspace{0.1 cm} \text{unless otherwise noted.} \end{array}$ 

| Symbol          | Parameter              | Test Conditions                         | Min | Тур | Мах  | Unit |
|-----------------|------------------------|-----------------------------------------|-----|-----|------|------|
| SAFE LOCK, MIRR | OR FOLD OUTPUT OUT6    |                                         |     |     |      |      |
| Bop out6        | On-resistance HS or LS | $T_J = 25^{\circ}C$ , lout6 = ±1.5 A    |     | 0.3 |      | 0    |
| Ron_outo        |                        | $T_{J} = 125^{\circ}C$ , lout6 = ±1.5 A |     |     | 0.63 | 52   |
| loc6_hs         | ·                      | -                                       |     |     | -    |      |

 $\begin{array}{l} \textbf{ELECTRICAL CHARACTERISTICS} \hspace{0.1cm} (\text{continued}) \\ 4.5 \hspace{0.1cm} \text{V} < V_{CC} < 5.25 \hspace{0.1cm} \text{V}, 8 \hspace{0.1cm} \text{V} < Vs < 18 \hspace{0.1cm} \text{V}, -40^{\circ}\text{C} < \text{T}_{J} < 150^{\circ}\text{C}; \hspace{0.1cm} \text{unless otherwise noted}. \end{array}$ 

| Symbol                               | Parameter                                       | Test Conditions                          | Min | Тур | Max  | Unit |  |
|--------------------------------------|-------------------------------------------------|------------------------------------------|-----|-----|------|------|--|
| BULB / LED DRIVER OUTPUTS OUT7, OUT8 |                                                 |                                          |     |     |      |      |  |
| Pop out7.8 ICB                       | On-resistance to supply,                        | $T_J = 25^{\circ}C$ , lout7,8 = -1 A     |     | 0.3 |      | 0    |  |
| HS switch, Bulb mode                 |                                                 | $T_{J} = 125^{\circ}C$ , lout7,8 = -1 A  |     |     | 0.68 | 52   |  |
| Bon out7.9 LED                       | On–resistance to supply,<br>HS switch, LED mode | $T_J = 25^{\circ}C$ , lout7,8 = -0.2 A   |     | 1.4 |      | 0    |  |
| Ron_out7,8_LED                       |                                                 | T <sub>J</sub> = 125°C, lout7,8 = -0.2 A |     |     | -    | 52   |  |

**ELECTRICAL CHARACTERISTICS** (continued) 4.5 V < V<sub>CC</sub> < 5.25 V, 8 V < Vs < 18 V, -40°C < T<sub>J</sub> < 150°C; unless otherwise noted.

| Symbol                         | Parameter                               | Test Conditions                            | Min   | Тур | Max   | Unit |  |  |
|--------------------------------|-----------------------------------------|--------------------------------------------|-------|-----|-------|------|--|--|
| LED DRIVER OUTPUTS OUT9, OUT10 |                                         |                                            |       |     |       |      |  |  |
| Den auto 40                    | On-resistance to supply.                | T <sub>J</sub> = 25°C, lout9,10 = -0.2 A   |       | 1.4 |       | Ω    |  |  |
| Ron_out9,10                    | HS switch                               | $T_{J} = 125^{\circ}C$ , lout9,10 = -0.2 A |       |     | 3     | Ω    |  |  |
| loc9,10                        | Overcurrent threshold                   |                                            | -0.63 |     | -0.38 | А    |  |  |
| luld9,10                       | Underload detection threshold           |                                            | -16   |     | -4    | mA   |  |  |
| td_OUT(on)9,10                 | Output delay time, Driver on            | Time from CSB going high to                |       | 18  | 48    |      |  |  |
| td_OUT(off)9,10                | Output delay time, Driver off           | V(OU19,10) = 0.1·Vs / 0.9·Vs (on/<br>off)  |       | 23  | 48    | μs   |  |  |
| lleak_act9,10                  | Output leakage current,<br>Active mode  | V(OUT9,10) = 0 V                           | -10   |     |       | μΑ   |  |  |
| lleak_stdby9,10                | Output leakage current,<br>Standby mode | V(OUT9,10) = 0 V                           | -5    |     |       | μΑ   |  |  |
| lleak_out_vs9,10               | Output pull-down current                | V(OUT9,10) = VS                            |       |     | 1     | mA   |  |  |
| td_uld9,10                     | Underload blanking delay                |                                            | 250   |     | 610   | μs   |  |  |
| td_old_OUT9,10                 | Overload shutdown<br>blanking delay     |                                            | 16    |     | 50    | μs   |  |  |
| frec9,10L                      | Recovery frequency, slow recovery mode  | CONTROL_3.0CRF = 0                         | 1.3   |     | 2.1   | kHz  |  |  |
| frec9,10H                      | Recovery frequency, fast recovery mode  | CONTROL_3.0CRF = 1                         | 2.6   |     | 4.2   | kHz  |  |  |
| dVout9,10                      | Slew rate                               | Vs = 13.5 V, Rload = 64 $\Omega$           |       | 0.2 |       | V/μs |  |  |

ELECTRICAL CHARACTERISTICS (continued) 4.5 V < V\_{CC} < 5.25 V, 8 V < Vs < 18 V, -40^{\circ}

 $\begin{array}{l} \textbf{ELECTRICAL CHARACTERISTICS} \hspace{0.1 cm} (\text{continued}) \\ 4.5 \hspace{0.1 cm} V < V_{CC} < 5.25 \hspace{0.1 cm} V, \hspace{0.1 cm} 8 \hspace{0.1 cm} V < Vs < 18 \hspace{0.1 cm} V, \hspace{0.1 cm} -40^{\circ}C < T_J < 150^{\circ}C; \hspace{0.1 cm} \text{unless otherwise noted.} \end{array}$ 

| Symbol                                  | Parameter                                                                      | Test Conditions                                                                                               | Min             | Тур   | Max                   | Unit |  |  |
|-----------------------------------------|--------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|-----------------|-------|-----------------------|------|--|--|
| CURRENT SENSE MONITOR OUTPUT ISOUT/PWM2 |                                                                                |                                                                                                               |                 |       |                       |      |  |  |
| Vis                                     | Current Sense output<br>functional voltage range                               | V <sub>CC</sub> = 5 V, Vs = 8–20 V                                                                            | 0               |       | V <sub>CC</sub> – 0.5 | V    |  |  |
|                                         | Current Sense output ratio<br>OUT1/6 and 7/8 (low<br>on–resistance bulb mode)  |                                                                                                               |                 | 10000 |                       |      |  |  |
| Kis                                     | Current Sense output ratio<br>OUT4/5                                           | $K = lout / lis,0 V \le Vis \le 4.5 V, V_{CC} = 5 V$                                                          |                 | 10000 |                       |      |  |  |
| (Note 7)                                | Current Sense output ratio<br>OUT9/10 and 7/8 (high<br>on-resistance LED mode) |                                                                                                               |                 | 2000  |                       |      |  |  |
|                                         | Current Sense output ratio<br>OUT11                                            |                                                                                                               |                 | 10000 |                       |      |  |  |
|                                         | Current Sense output<br>accuracy OUT1/6                                        | $0.3 \text{ V} \le \text{Vis} \le 4.5 \text{ V}, \text{V}_{\text{CC}} = 5 \text{ V}$<br>lout1/6 = 0.5–2.9 A   | –10% – 2% FS    |       | 10% + 2% FS           |      |  |  |
|                                         | Current Sense output<br>accuracy OUT4/5                                        | $0.3 \text{ V} \le \text{Vis} \le 4.5 \text{ V}, \text{ V}_{\text{CC}} = 5 \text{ V},$<br>lout4/5 = 0.5–5.9 A | –10% – 2% FS    |       | 10% + 2% FS           |      |  |  |
| lis,acc                                 | Current Sense output<br>accuracy OUT7/8 (low<br>on-resistance bulb mode)       | 0.3 V 5 Vis 5 4.5 V, V <sub>CC</sub> = 5 V<br>lout7/8 = 0.5−1.3 A                                             | –10%–1.5%<br>FS |       | 10% + 1.5% FS         |      |  |  |
| (Notes 8 and 9)                         | Current Sense output<br>accuracy OUT7/8 (high<br>on-resistance LED mode)       | $0.3 \text{ V} \le \text{Vis} \le 4.5 \text{ V}, \text{V}_{CC} = 5 \text{ V}$<br>lout7/8 = 0.1–0.3 A          |                 |       |                       |      |  |  |
| 1                                       |                                                                                |                                                                                                               |                 |       |                       |      |  |  |

#### ELECTRICAL CHARACTERISTICS (continued)

4.5 V < V\_{CC} < 5.25 V, 8 V < Vs < 18 V, -40  $^{\circ}$ C < T\_J < 150  $^{\circ}$ C; unless otherwise noted.

| Symbol                               | Parameter                                                 | Test Conditions                                                                                   | Min                 | Тур  | Мах                 | Unit |  |
|--------------------------------------|-----------------------------------------------------------|---------------------------------------------------------------------------------------------------|---------------------|------|---------------------|------|--|
| DIGITAL INPUTS CSB, SCLK, PWM1/2, SI |                                                           |                                                                                                   |                     |      |                     |      |  |
| Vinl                                 | Input low level                                           | $V_{CC} = 5 V$                                                                                    |                     |      | 0.3·V <sub>CC</sub> | V    |  |
| Vinh                                 | Input high level                                          |                                                                                                   | 0.7·V <sub>CC</sub> |      |                     | V    |  |
| Vin_hyst                             | Input hysteresis                                          |                                                                                                   | 500                 |      |                     | mV   |  |
| Rcsb_pu                              | CSB pull-up resistor                                      | $V_{CC} = 5 V_{CC}$<br>0 V < Vcsb < 0.7 · V <sub>CC</sub>                                         | 30                  | 120  | 250                 | kΩ   |  |
| Rsclk_pd                             | SCLK pull-down resistor                                   | V <sub>CC</sub> = 5 V,<br>Vsclk = 1.5 V                                                           | 30                  | 60   | 220                 | kΩ   |  |
| Rsi_pd                               | SI pull-down resistor                                     | V <sub>CC</sub> = 5 V,<br>Vsi = 1.5 V                                                             | 30                  | 60   | 220                 | kΩ   |  |
| Rpwm1_pd                             | PWM1 pull-down resistor                                   | V <sub>CC</sub> = 5 V,<br>Vpwm1 = 1.5 V                                                           | 30                  | 60   | 220                 | kΩ   |  |
| Rpwm2_pd                             | PWM2 pull-down resistor                                   | V <sub>CC</sub> = 5 V,<br>Vpwm2 = 1.5 V,<br>current sense disabled                                | 30                  | 60   | 220                 | kΩ   |  |
| lleak_isout                          | Output leakage current                                    | current sense enabled                                                                             | -1                  |      | 3.5                 | μΑ   |  |
| Ccsb / sclk /<br>pwm1/2              | Pin capacitance                                           | 0 V < V <sub>CC</sub> < 5.25 V (Note 10)                                                          |                     |      | 10                  | pF   |  |
| DIGITAL INPUTS C                     | SB, SCLK, SI; TIMING                                      |                                                                                                   |                     |      |                     |      |  |
| tsclk                                | Clock period                                              | V <sub>CC</sub> = 5 V                                                                             |                     | 1000 |                     | ns   |  |
| tsclk_h                              | Clock high time                                           |                                                                                                   | 115                 |      |                     | ns   |  |
| tsclk_l                              | Clock low time                                            |                                                                                                   | 115                 |      |                     | ns   |  |
| tset_csb                             | CSB setup time, CSB low before rising edge of SCLK        |                                                                                                   | 400                 |      |                     | ns   |  |
| tset_sclk                            | SCLK setup time, SCLK<br>low before rising edge of<br>CSB |                                                                                                   | 400                 |      |                     | ns   |  |
| tset_si                              | SI setup time                                             |                                                                                                   | 200                 |      |                     | ns   |  |
| thold_si                             | SI hold time                                              |                                                                                                   | 200                 |      |                     | ns   |  |
| tr_in                                | Rise time of input signal SI,<br>SCLK, CSB                |                                                                                                   |                     |      | 100                 | ns   |  |
| tf_in                                | Fall time of input signal SI, SCLK, CSB                   |                                                                                                   |                     |      | 100                 | ns   |  |
| tcsb_hi_stdby                        | Minimum CSB high time,<br>switching from Standby<br>mode  | Transfer of SPI–command to input<br>register, valid before tsact mode<br>transition delay expires |                     | 5    | 10                  | μS   |  |

10. Values based on design and/or characterization.

Active mode

Minimum CSB high time,

tcsb\_hi\_min

2

4

μs

#### ELECTRICAL CHARACTERISTICS

#### ELECTRICAL CHARACTERISTICS (continued)

4.5 V < V<sub>CC</sub> < 5.25 V, 8 V < Vs < 18 V,  $-40^{\circ}$ C < T<sub>J</sub> < 150°C; unless otherwise noted.

| Symbol         | Parameter                                                                   | Test Conditions                                                                               | Min | Тур | Max | Unit |
|----------------|-----------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|-----|-----|-----|------|
| THERMAL PROTE  | CTION                                                                       |                                                                                               |     | -   |     | -    |
| Tjtw_on        | Temperature warning threshold                                               | Junction temperature                                                                          | 140 |     | 160 | °C   |
| Tjtw_hys       | Thermal warning hysteresis                                                  |                                                                                               |     | 5   |     | °C   |
| Tjsd_on        | Thermal shutdown<br>threshold,<br>T <sub>J</sub> increasing                 | Junction temperature                                                                          | 160 |     | 180 | °C   |
| Tjsd_off       | Thermal shutdown threshold, $T_J$ decreasing                                | Junction temperature                                                                          | 160 |     |     | °C   |
| Tjsd_hys       | Thermal shutdown<br>hysteresis                                              |                                                                                               |     | 5   |     | °C   |
| Tjsdtw_delta   | Temperature difference<br>between warning and<br>shutdown threshold         |                                                                                               |     | 20  |     | °C   |
| td_tx          | Filter time for thermal warning and shutdown                                | TW / TSD Global Status bits                                                                   | 10  |     | 100 | μs   |
| OPERATING MODE | ES TIMING                                                                   |                                                                                               |     |     |     |      |
| tact           | Time delay for mode<br>change from Unpowered<br>mode into Standby mode      | SPI communication ready after V_CC reached V_{uv_VCC(off)} threshold                          |     |     | 30  | μs   |
| tsact          | Time delay for mode<br>change from Standby mode<br>into Active mode         | Time until output drivers are en-<br>abled after CSB going to high and<br>CONTROL_0.MODE = 1  |     | 170 | 440 | μs   |
| tacts          | Time delay for mode<br>change from Active mode<br>into Standby mode via SPI | Time until output drivers are dis-<br>abled after CSB going to high and<br>CONTROL_0.MODE = 0 |     |     | 300 | μs   |

INTERNAL PWM CONTROL UNIT (OUT7 – OUT10)

| PWMIo | PWM frequency, low selection  | CONTROL_2.PWMI = 1,<br>PWMx.FSELx = 0 | 135 | 170 | 200 | Hz |
|-------|-------------------------------|---------------------------------------|-----|-----|-----|----|
| PWMhi | PWM frequency, high selection | CONTROL_2.PWMI = 1,<br>PWMx.FSELx = 1 | 175 | 225 | 260 | Hz |

#### DETAILED OPERATING AND PIN DESCRIPTION

#### General

The NCV7707C/D provides six half-bridge drivers, five independent high-side outputs and a programmable PWM control unit for free configuration. Strict adherence to integrated circuit die temperature is necessary, with a static maximum die temperature of 150°C. This may limit the number of drivers enabled at one time. Output drive control and fault reporting are handled via the SPI (Serial Peripheral Interface) port. A SPI-controlled mode control provides a low quiescent sleep current mode when the device is not being utilized. A pull down is provided on the SI and SCLK inputs to ensure they default to a low state in the event of a severed input signal. A pull-up is provided on the CSB input disabling SPI communication in the event of an open CSB input.

#### **Supply Concept**

#### Power Supply Scheme – VS and VCC

The Vs power supply voltage is used to supply the half bridges and the high-side drivers. An all-internal chargepump is implemented to provide the gate-drive voltage for the n-channel type high-side transistors. The VCC voltage is used to supply the logic section of the IC, including the SPI interface.

Due to the independent logic supply voltage the control and status information will not be lost in case of a loss of Vs supply voltage. The device is designed to operate inside the specified parametric limits if the VCC supply voltage is within the specified voltage range (4.5 V to 5.25 V). Between the operational level and the VCC undervoltage threshold level (Vuv\_VCC) it is guaranteed that the device remains in a safe functional state without any inadvertent change to logic information.

#### **Device / Module Ground Concept**

The high-side output stages OUT7-11 are designed to handle DC output voltage conditions down to -0.3 V and allow for short negative transient currents due to parasitic line inductances. Therefore the application has to take care that these ratings are not violated under abnormal operating conditions (module loss of GND, ground shift if load connected to external GND) by either implementing external bypass diodes connected to GND or a direct connection between load–GND and module–GND. Since these output stages are designed to drive resistive loads, restrictions on maximum inductance / clamping energy apply.

The heat slug is not hard–connected to internal GND rail. It has to be connected externally.

#### **Power Up/Down Control**

In order to prevent uncontrolled operation of the device during power/up down, an undervoltage lockout feature is implemented. Both supply voltages ( $V_{CC}$  and  $V_s$ ) are

monitored for undervoltage conditions supporting a safe power–up transition. When Vs drops below the undervoltage threshold Vuv\_vs(off) (Vs undervoltage threshold) all output stages are switched to high–impedance state and the global status bit UOV\_OC is set. This bit is a multi information bit in the Global Status Byte which is set in case of overcurrent, Vs over– and undervoltage. In case of undervoltage the status bit STATUS\_2.VSUV is set, too.

Bit CONTROL\_3.OVUVR (Vs under-/overvoltage recovery behavior) can be used to select the desired recovery behavior after a Vs under-voltage event. In case of OVUVR = 0, all output stages return to their programmed state as soon as Vs recovers back to its normal operating range. If OVUVR is set, the automatic recovery function is disabled thus the output stages will remain in high-impedance condition until the status bits have been cleared by the microcontroller. To avoid high current oscillations in case of output short to GND and low Vs voltage conditions, it is recommended to disable the Vs-auto-recovery by setting OVUVR = 1.

#### Chargepump

In Standby mode, the chargepump is disabled. After enabling the device by setting bit CONTROL\_0.MODE to active (1), the internal oscillator is started and the voltage at the CHP output pin begins to increase. The output drivers are enabled after a delay of tsact once MODE was set to active.

#### **Driver Outputs**

#### **Output PWM Control**

For all half-bridge outputs as well as the high-side outputs the device features the possibility to logically combine the SPI-setting with a PWM signal that can be provided to the inputs PWM1 and ISOUT/PWM2, respectively. Exceledit Twe tsuhase logs @ Tike OP\$ so the second s

#### Table 1. PWM CONTROL SCHEME

|        | PWM Control Input  |                    |  |  |  |
|--------|--------------------|--------------------|--|--|--|
| Output | CONTROL_2.PWMI = 0 | CONTROL_2.PWMI = 1 |  |  |  |
| OUT1   | PWM1               | PWM1               |  |  |  |
| OUT2   | PWM1               | PWM1               |  |  |  |
| OUT3   | PWM1               | PWM1               |  |  |  |
| OUT4   | PWM1               | PWM1               |  |  |  |
| OUT5   | ISOUT/PWM2         | ISOUT/PWM2         |  |  |  |
| OUT6   | PWM1               | PWM1               |  |  |  |
| OUT7   | PWM1               | PWM_7/8.PW7[6:0]   |  |  |  |
| OUT8   | ISOUT/PWM2         | PWM_7/8.PW8[6:0]   |  |  |  |
| OUT9   | PWM1               | PWM_9/10.PW9[6:0]  |  |  |  |
| OUT10  | ISOUT/PWM2         | PWM_9/10.PW10[6:0] |  |  |  |
| OUT11  | PWM1               | ·                  |  |  |  |



Figure 6. PWM Discharge Mode for ECFB

#### **Diagnostic Functions**

All diagnostic functions (overcurrent, underload, power supply monitoring, thermal warning and thermal shutdown) are internally filtered. The failure condition has to be valid for the minimum specified filtering time (td\_old, td\_uld, td\_uvov and td\_tx) before the corresponding status bit in the status register is set. The filter function is used to improve the noise immunity of the device. The undercurrent and temperature warning functions are intended for information purpose and do not affect the state of the output drivers. An overcurrent condition disables the corresponding output driver while a thermal shutdown event disables all outputs into high impedance state. Depending on the setting of the overcurrent recovery bits in the input register, the driver can



Figure 8. Mode Transitions Diagram



Figure 9. Mode Timing Diagram

#### **SPI Control**

#### **General Description**

The 4-wire SPI interface establishes a full duplex synchronous serial communication link between the NCV7707C/D and the application's microcontroller. The NCV7707C/D always operates in slave mode whereas the controller provides the master function. A SPI access is performed by applying an active-low slave select signal at CSB. SI is the data input, SO the data output. The SPI master provides the clock to the NCV7707C/D via the SCLK input. The digital input data is sampled at the rising edge at SCLK. The data output SO is in high impedance state (tri-state) when CSB is high. To readout the global error flag without sending a complete SPI frame, SO indicates the corresponding value as soon as CSB is set to active. With the first rising edge at SCLK after the high-to-low transition of CSB, the content of the selected register is transferred into the output shift register.

The NCV7707C/D provides four control registers (CONTROL 0/1/2/3), two PWM configuration registers (PWM\_7/8 and PWM\_9/10), three status registers (STATUS\_0/1/2) and one general configuration register (CONFIG). Each of these register contains 16-bit data, together with the 8-bit frame header (access type, register address), the SPI frame length is therefore 24 bits. In addition to the read/write accessible registers, the provides five 8–bit ID NCV7707C/D registers (ID\_HEADER, ID\_VERSION, ID\_CODE1/2 and ID\_SPI-FRAME) with 8-bit data length. The content of these registers can still be read out by a 24-bit access, the data is then transferred in the MSB section of the data frame.

#### **SPI Frame Format**

Figure 10 shows the general format of the NCV7707C/D SPI frame.



#### 24-bit SPI Interface

Both 24-bit input and output data are MSB first. Each SPI-input frame consists of a command byte followed by two data bytes. The data returned on SO within the same frame always starts with the global status byte. It provides general status information about the device. It is then followed by 2 data bytes (in-frame response) which content depends on the information transmitted in the command byte. For write access cycles, the global status byte is followed by the previous content of the addressed register.

#### Chip Select Bar (CSB)

CSB is the SPI input pin which controls the data transfer of the device. When CSB is high, no data transfer is possible and the output pin SO is set to high impedance. If CSB goes low, the serial data transfer is allowed and can be started. The communication ends when CSB goes high again.

#### Serial Clock (SCLK)

If CSB is set to low, the communication starts with the rising edge of the SCLK input pin. At each rising edge of SCLK, the data at the input pin Serial IN (SI) is latched. The data is shifted out thru the data output pin SO after the falling edges of SCLK. The clock SCLK must be active only within the frame time, means when CSB is low. The correct transmission is monitored by counting the number of clock pulses during the communication frame. If the number of SCLK pulses does not correspond to the frame width indicated in the SPI-frame-ID (Chip ID Register, address 3Eh) the frame will be ignored and the communication failure bit "TF" in the global status byte will be set. Due to this safety functionality, daisy chaining the SPI is not possible. Instead, a parallel operation of the SPI bus by controlling the CSB signal of the connected ICs is recommended.

#### Serial Data In (SI)

During the rising edges of SCLK (CSB is low), the data is transferred into the device thru the input pin SI in a serial

way. The device features a stuck–at–one detection, thus upon detection of a command = FFFFFFh, the device will be forced into the Standby mode. All output drivers are switched off.

#### Serial Data Out (SO)

The SO data output driver is activated by a logical low level at the CSB input and will go from high impedance to a low or high level depending on the global status bit, FLT (Global Error Flag). The first rising edge of the SCLK input after a high to low transition of the CSB pin will transfer the content of the selected register into the data out shift register. Each subsequent falling edge of the SCLK will shift the next bit thru SO out of the device.

#### Command Byte / Global Status Byte

Each communication frame starts with a command byte (Table 2). It consists of an operation code (OP[1:0], Table 3) which specifies the type of operation (Read, Write, Read & Clear, Readout Device Information) and a six bit address (A[5:0], Table 4). If less than six address bits are required, the remaining bits are unused but are reserved. Both Write and Read mode allow access to the internal registers of the device. A "Read & Clear"–access is used to read a status register and subsequently clear its content. The "Read Device Information" allows to read out device related information such as ID–Header, Product Code, Silicon Version and Category and the SPI–frame ID. While receiving the command byte, the global status byte is transmitted to the microcontroller. It contains global fault information for the device, as shown in Table 6.

#### **ID Register**

Chip ID Information is stored in five special 8-bit ID registers (Table 5). The content can be read out at the beginning of the communication.

|                |     | Command Byte (IN) / Global Status Byte (OUT) |      |     |    |        |     |      |  |  |  |  |  |
|----------------|-----|----------------------------------------------|------|-----|----|--------|-----|------|--|--|--|--|--|
| Bit            | 23  | 22                                           | 21   | 20  | 19 | 18     | 17  | 16   |  |  |  |  |  |
| NCV7707C/D IN  | OP1 | OP0                                          | A5   | A4  | A3 | A2     | A1  | A0   |  |  |  |  |  |
| NCV7707C/D OUT | FLT | TF                                           | RESB | TSD | TW | UOV_OC | ULD | NRDY |  |  |  |  |  |
| Reset Value    | 1   | 0                                            | 0    | 0   | 0  | 0      | 0   | 1    |  |  |  |  |  |

#### Table 3. COMMAND BYTE, ACCESS MODE

| OP1 | OP0 | Description                |
|-----|-----|----------------------------|
| 0   | 0   | Write Access (W)           |
| 0   | 1   | Read Access (R)            |
| 1   | 0   | Read and Clear Access (RC) |
| 1   | 1   | Read Device ID (RDID)      |

| A[5:0] | Access | Description                      | Content                                                                                   |
|--------|--------|----------------------------------|-------------------------------------------------------------------------------------------|
| 00h    | R/W    | Control Register<br>CONTROL_0    | Device mode control, Bridge outputs control                                               |
| 01h    | R/W    | Control Register<br>CONTROL_1    | High-side outputs control, ECM control                                                    |
| 02h    | R/W    | Control Register<br>CONTROL_2    | Bridge outputs recovery control, PWM enable, ECM setup                                    |
| 03h    | R/W    | Control Register<br>CONTROL_3    | High-side outputs recovery control, PWM enable, Current Sense selection                   |
| 08h    | R/W    | PWM Control Register<br>PWM_7/8  | PWM control register for OUT7,8                                                           |
| 09h    | R/W    | PWM Control Register<br>PWM_9/10 | PWM control register for OUT9,10                                                          |
| 10h    | R/RC   | Status Register<br>STATUS_0      | Bridge outputs Overcurrent diagnosis                                                      |
| 11h    | R/RC   | Status Register<br>STATUS_1      | Bridge outputs Underload diagnosis                                                        |
| 12h    | R/RC   | Status Register<br>STATUS_2      | HS outputs Overcurrent and Underload diagnosis, Vs Over- and Under-<br>voltage, EC-mirror |
| 3Fh    | R/W    | Configuration Register<br>CONFIG | Mask bits for global fault bits                                                           |

#### Table 4. COMMAND BYTE, REGISTER ADDRESS

#### Table 5. CHIP ID INFORMATION

| A[5:0] | Access | Description    | Content |
|--------|--------|----------------|---------|
| 00h    | RDID   | ID header      | 4300h   |
| 01h    | RDID   | Version        | 0A00h   |
| 02h    | RDID   | Product Code 1 | 7700h   |
| 03h    | RDID   | Product Code 2 | 0700h   |
| 3Eh    | RDID   | SPI–Frame ID   | 0200h   |

#### Table 6. Global Status Byte Content

| FLT    |                        | Global Fault Bit                                                                                                                                                                                                                                                                                               |
|--------|------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0      | No fault Condition     | Failures of the Global Status Byte, bits [6:0] are always linked to the Global Fault Bit FLT. This bit is generated by an OR combination of all failure bits of the device (RESB inverted). It is reflected via the SO pin while CSB is held low and NO clock signal is present (before first positive edge of |
| 1      | Fault Condition        | SCLK). The flag will remain valid as long as CSB is held low. This operation does not cause the<br>Transmission error Flag in the Global Status Byte to be set. Signals TW and ULD can be<br>masked.                                                                                                           |
|        |                        |                                                                                                                                                                                                                                                                                                                |
| TF     |                        | SPI Transmission Error                                                                                                                                                                                                                                                                                         |
| 0      | No Error               | If the number of clock pulses within the previous frame was unequal 0 (FLT polling) or 24. The                                                                                                                                                                                                                 |
| 1      | Error                  | frame was ignored and this flag was set.                                                                                                                                                                                                                                                                       |
|        |                        |                                                                                                                                                                                                                                                                                                                |
| RESB   |                        | Reset Bar (Active low)                                                                                                                                                                                                                                                                                         |
| 0      | Reset                  | Bit is set to "0" after a Power-on-Reset or a stuck-at-1 fault at SI (SPI-input data = FFFFFh)                                                                                                                                                                                                                 |
| 1      | Normal Operation       | has been detected. All outputs are disabled.                                                                                                                                                                                                                                                                   |
|        |                        |                                                                                                                                                                                                                                                                                                                |
| TSD    |                        | Overtemperature Shutdown                                                                                                                                                                                                                                                                                       |
| 0      | No Thermal<br>Shutdown | Thermal Shutdown Status indication. In case of a Thermal Shutdown, all output drivers including the charge pump output are deactivated (high impedance). The TSD bit has to be cleared thru a                                                                                                                  |
| 1      | Thermal Shutdown       | SW reset to reactivate the output drivers and the chargepump output.                                                                                                                                                                                                                                           |
|        |                        |                                                                                                                                                                                                                                                                                                                |
| тw     |                        | Thermal Warning                                                                                                                                                                                                                                                                                                |
| 0      | No Thermal Warning     | This bit indicates a pre-warning level of the junction temperature. It is maskable by the                                                                                                                                                                                                                      |
| 1      | Thermal Warning        | Configuration Register (CONFIG.NO_TW).                                                                                                                                                                                                                                                                         |
|        |                        |                                                                                                                                                                                                                                                                                                                |
| UOV_OC |                        | VS Monitoring, Overcurrent Status                                                                                                                                                                                                                                                                              |
| 0      | No Fault               | This bit represents a logical OR combination of under-/overvoltage signals (VS) and overcurrent                                                                                                                                                                                                                |
| 1      | Fault                  | signals.                                                                                                                                                                                                                                                                                                       |
|        |                        |                                                                                                                                                                                                                                                                                                                |
| ULD    |                        | Underload                                                                                                                                                                                                                                                                                                      |
| 0      | No Underload           | This bit represents a logical OR combination of all underload signals. It is maskable by the                                                                                                                                                                                                                   |
| 1      | Underload              | LS1, only (CONFIG.NO_ULD_HS1/LS1).                                                                                                                                                                                                                                                                             |
|        | •                      | •                                                                                                                                                                                                                                                                                                              |

NRDY

#### **SPI REGISTERS CONTENT**

## CONTROL\_0 Register Address: 00h

| Bit         | D15 | D14 | D13 | D12 | D11 | D10 | D9  | D8  | D7  | D6  | D5  | D4  | D3 | D2 | D1 | D0   |
|-------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|----|----|----|------|
| Access type | RW  | -  | -  | -  | RW   |
| Bit name    | HS1 | LS1 | HS2 | LS2 | HS3 | LS3 | HS4 | LS4 | HS5 | LS5 | HS6 | LS6 | 0  | 0  | 0  | MODE |
| Reset value | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0  | 0  | 0  | 0    |

|               | HSx | LSx |         | Description         | Remark                                                                                            |  |  |  |  |
|---------------|-----|-----|---------|---------------------|---------------------------------------------------------------------------------------------------|--|--|--|--|
| HS/LS Outputs | 0   | 0   | default | OUTx High impedance | If a driver is enabled by the control register AND the                                            |  |  |  |  |
| OUT1–6 Driver | 0   | 1   |         | LSx enabled         | register, the output is only activated if PWM1 (PWM2)                                             |  |  |  |  |
| Control       | 1   | 0   |         | HSx enabled         | input signal is high. Since OUT1OUT6 are<br>half-bridge outputs, activating both HS and LS at the |  |  |  |  |
|               | 1   | 1   |         | OUTx High impedance | same time is prevented by internal logic.                                                         |  |  |  |  |

|              | MODE |         | Description | Remark                                                                                                                                                                |
|--------------|------|---------|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Mode Control | 0    | default | Standby     | If MODE is set, the device is switched to Active mode.<br>Resetting MODE forces the device to transition into<br>Standby mode, all internal memory is cleared and all |
|              | 1    |         | Active      | output stages are switched into their default state<br>(off). Delay of tacts should be respected before the<br>Active mode is requested again.                        |

#### CONTROL\_1 Register Address: 01h

| Bit         | D15   | D14   | D13   | D12   | D11 | D10  | D9   | D8         | D7   | D6   | D5   | D4   | D3   | D2   | D1   | D0 |
|-------------|-------|-------|-------|-------|-----|------|------|------------|------|------|------|------|------|------|------|----|
| Access type | RW    | RW    | RW    | RW    | RW  | RW   | RW   | RW         | RW   | RW   | RW   | RW   | RW   | RW   | RW   | -  |
| Bit name    | HS7.1 | HS7.0 | HS8.1 | HS8.0 | HS9 | HS10 | HS11 | LS<br>ECFB | DAC5 | DAC4 | DAC3 | DAC2 | DAC1 | DAC0 | ECEN | 0  |
| Reset value | 0     | 0     | 0     | 0     | 0   | 0    | 0    | 0          | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0  |

| HSx.1 | HSx.0 |         | Description         | Remark |
|-------|-------|---------|---------------------|--------|
| 0     | 0     | default | OUTx High impedance |        |

HS Outputs OUT7,8 Control

If a driver is enabled by the sn750704 re8o0 0 8 5 ref251.036 628.498 95

#### CONTROL\_2 Register Address: 02h

| Audress. 0211 |      |      |      |      |      |      |             |      |              |              |              |              |              |              |              |     |
|---------------|------|------|------|------|------|------|-------------|------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|-----|
| Bit           | D15  | D14  | D13  | D12  | D11  | D10  | D9          | D8   | D7           | D6           | D5           | D4           | D3           | D2           | D1           | D0  |
| Access type   | RW          | RW   | RW           | RW           | RW           | RW           | RW           | RW           | RW           | RW  |
| Bit name      | OCR1 | OCR2 | OCR3 | OCR4 | OCR5 | OCR6 | OCR<br>ECFB | PWMI | OUT1<br>PWM1 | OUT2<br>PWM1 | OUT3<br>PWM1 | OUT4<br>PWM1 | OUT5<br>PWM2 | OUT6<br>PWM1 | ECFB<br>PWM1 | FSR |
| Reset value   | 0    | 0    | 0    | 0    | 0    | 0    | 0           | 0    | 0            | 0            | 0            | 0            | 0            | 0            | 0            | 0   |

|                         | OCRx |         | Description                   | Remark                                                                                                                                                      |
|-------------------------|------|---------|-------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Overcurrent<br>Recovery | 0    | default | Overcurrent Recovery disabled | During an overcurrent event the overcurrent status bit STATUS_0/2.OCx is set and the dedicated output is switched off. (The global multi bit UOV_OC is set, |
| licertely               | 1    |         | Overcurrent Recovery enabled  | also). When the overcurrent recovery bit is enabled,<br>the output will be reactivated automatically after a<br>programmable delay time (CONTROL_3.OCRF).   |

|          | PWMI |         | Description                   | Remark                                                                                               |
|----------|------|---------|-------------------------------|------------------------------------------------------------------------------------------------------|
| PWM Unit | 0    | default | Internal PWM unit<br>disabled | The device has three different PWM sources: external pins PWM1, PWM2 and the internal PWM unit which |
|          | 1    |         | Internal PWM unit<br>enabled  | can be used to control the lamp drivers in an additional way. PWMI selects the internal PWM unit.    |

|                     | OUTx PWM |         | Description       | Remark                                                                                                                                                                |
|---------------------|----------|---------|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PWM1/2<br>Selection | 0        | default | PWMx not selected | Fi38th@tradfirtbridgenodeputisthtbiteplossible to select the<br>PWM input pins PWM1 or PWM2. In this case the<br>dedicated output (selected in CONTROL_0 register) is |
|                     | 1        |         | PWMx selected     | on if the PWM input signal is high. OUT5 is controlled<br>by PWM2, all other half-bridges are controlled by<br>PWM1.                                                  |

|                                 | FSR |         | Description        | Remark |
|---------------------------------|-----|---------|--------------------|--------|
| DAC Full-scale<br>Range Control | 0   | default | Vout = 1.5 / 2^6 · |        |
|                                 |     |         |                    |        |

#### CONTROL\_3 Register Address: 03h

| Bit         | D15 | D14 | D13 | D12 | D11 | D10 | D9 | D8 | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 |  |
|-------------|-----|-----|-----|-----|-----|-----|----|----|----|----|----|----|----|----|----|----|--|
| Access Type |     |     | •   |     |     |     |    |    |    |    |    |    | -  | -  | -  |    |  |

|           | IS3 | IS2 | IS1 | IS0 | Description                    | Remark                                                                                             |
|-----------|-----|-----|-----|-----|--------------------------------|----------------------------------------------------------------------------------------------------|
|           | 0   | 0   | 0   | 0   | OUT1                           |                                                                                                    |
|           | 0   | 0   | 0   | 1   | current sensing<br>deactivated |                                                                                                    |
|           | 0   | 0   | 1   | 0   | current sensing<br>deactivated |                                                                                                    |
|           | 0   | 0   | 1   | 1   | OUT4                           |                                                                                                    |
|           | 0   | 1   | 0   | 0   | OUT5                           |                                                                                                    |
|           | 0   | 1   | 0   | 1   | OUT6                           |                                                                                                    |
|           | 0   | 1   | 1   | 0   | OUT7                           |                                                                                                    |
| Current   | 0   | 1   | 1   | 1   | OUT8                           | The current in all high-side power stages (except of OUT2/3) can be monitored at the bidirectional |
| Sensing   | 1   | 0   | 0   | 0   | OUT9                           | multifunctional pin ISOUT/PWM2.                                                                    |
| Selection | 1   | 0   | 0   | 1   | OUT10                          | as output by setting the current selection bits IS[3:0].                                           |
|           | 1   | 0   | 1   | 0   | OUT11                          | The selected high-side output will be multiplexed to the output ISOUT.                             |
|           | 1   | 0   | 1   | 1   | current sensing<br>deactivated |                                                                                                    |
|           | 1   | 1   | 0   | 0   | current sensing<br>deactivated |                                                                                                    |
|           | 1   | 1   | 0   | 1   | current sensing<br>deactivated |                                                                                                    |
|           | 1   | 1   | 1   | 0   | current sensing deactivated    |                                                                                                    |
|           | 1   | 1   | 1   | 1   | current sensing<br>deactivated |                                                                                                    |

#### PWM\_7/8 Register Address: 08h

| Bit         | D15 | D14 | D13 | D12 | D11 | D10 | D9 | D8 | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 |
|-------------|-----|-----|-----|-----|-----|-----|----|----|----|----|----|----|----|----|----|----|
| Access Type | RW  | RW  | RW  | RW  | RW  |     |    |    |    |    |    |    |    |    |    |    |

#### PWM\_9/10 Register Address: 09h

| Bit         | D15   | D14   | D13   | D12   | D11   | D10   | D9    | D8    | D7         | D6     | D5     | D4     | D3     | D2     | D1     | D0     |
|-------------|-------|-------|-------|-------|-------|-------|-------|-------|------------|--------|--------|--------|--------|--------|--------|--------|
| Access Type | RW         | RW     | RW     | RW     | RW     | RW     | RW     | RW     |
| Bit Name    | FSEL9 | PW9.6 | PW9.5 | PW9.4 | PW9.3 | PW9.2 | PW9.1 | PW9.0 | FSEL<br>10 | PW10.6 | PW10.5 | PW10.4 | PW10.3 | PW10.2 | PW10.1 | PW10.0 |
| Reset Value | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0          | 0      | 0      | 0      | 0      | 0      | 0      | 0      |

PW9[6:0]

PWM Duty Cycle selector for OUT9

#### STATUS\_0 Register Address: 10h

| Bit         | D15  | D14  | D13  | D12  | D11  | D10  | D9   | D8   | D7   | D6   | D5   | D4   | D3 | D2 | D1 | D0 |
|-------------|------|------|------|------|------|------|------|------|------|------|------|------|----|----|----|----|
| Access Type | R/RC | -  | -  | -  | -  |
| Bit Name    | OC   |      |      |      |      |      |      |      |      |      |      |      |    |    |    |    |

#### STATUS\_2 Register Address: 12h

| Bit         | D15       | D14        | D13       | D12        | D11       | D10        | D9         | D8          | D7         | D6          | D5         | D4          | D3   | D2   | D1   | D0   |
|-------------|-----------|------------|-----------|------------|-----------|------------|------------|-------------|------------|-------------|------------|-------------|------|------|------|------|
| Access type | R/RC      | R/RC       | R/RC      | R/RC       | R/RC      | R/RC       | R/RC       | R/RC        | R/RC       | R/RC        | R/RC       | R/RC        | R/RC | R/RC | R/RC | R/RC |
| Bit name    | OC<br>HS7 | ULD<br>HS7 | OC<br>HS8 | ULD<br>HS8 | OC<br>HS9 | ULD<br>HS9 | OC<br>HS10 | ULD<br>HS10 | OC<br>HS11 | ULD<br>HS11 | OC<br>ECFB | ULD<br>ECFB | vsuv | vsov | ECLO | ECHI |

Reset value

#### CONFIG Register Address: 3Fh

| Address. 51 fr |     |     |     |     |     |     |    |    |              |    |               |               |           |    |                |    |
|----------------|-----|-----|-----|-----|-----|-----|----|----|--------------|----|---------------|---------------|-----------|----|----------------|----|
| Bit            | D15 | D14 | D13 | D12 | D11 | D10 | D9 | D8 | D7           | D6 | D5            | D4            | D3        | D2 | D1             | D0 |
| Access Type    | -   | -   | -   | -   | -   | -   | -  | -  | RW           | -  | RW            | RW            | RW        | I  | RW             | -  |
| Bit Name       | 0   | 0   | 0   | 0   | 0   | 0   | 0  | 0  | ECM<br>LSPWM | 0  | NO_ULD<br>HS1 | NO_ULD<br>LS1 | NO_<br>TW | 0  | NO_ULD<br>OUTn | 0  |
| Reset Value    | 0   | 0   | 0   | 0   | 0   | 0   | 0  | 0  | 0            | 0  | 0             | 0             | 0         | 0  | 0              | 0  |

|                                     | NO_ULD<br>HS1 | NO_ULD<br>LS1 |         | Description                                | Remark                                                                                                                  |
|-------------------------------------|---------------|---------------|---------|--------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|
|                                     | 0             | 0             | default | Global underload flag<br>at HS1/LS1 active |                                                                                                                         |
| Global<br>Underload Flag<br>HS1/LS1 | 0             | 1             |         | No global underload flag at LS1            | For ULD_HS1 and ULD_LS1 it is possible to<br>deactivate the global ULD failure bit by setting the<br>configuration bits |
|                                     | 1             | 0             |         | No global underload flag at HS1            | CONFIG.NO_ULD_HS1/LS1.With setting<br>CONFIG.NO_ULD_OUTn the global ULD failure<br>bit is deactivated in general.       |
|                                     | 1             | 1             |         | No global underload flag at HS1/LS1        |                                                                                                                         |

|                            | NO_TW |         | Description                    | Remark                                   |
|----------------------------|-------|---------|--------------------------------|------------------------------------------|
| No Thermal<br>Warning Flag | 0     | default | Thermal warning flag active    | The global thermal warning bit TW can be |
|                            | 1     |         | No thermal warning flag active | deactivated.                             |

| Global<br>Undeload Flag<br>OUTn | NO_ULD_OUTn |         | Description                     | Remark                                     |
|---------------------------------|-------------|---------|---------------------------------|--------------------------------------------|
|                                 | 0           | default | Global underload flag active    | By setting CONFIG.NO_ULD_OUTn the global   |
|                                 | 1           |         | No global underload flag active | ULD failure bit is deactivated in general. |

| ECM PWM<br>Discharge | ECM_LSPWM |         | Description                | Remark                                                                                                                                                                                                       |
|----------------------|-----------|---------|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                      | 0         | default | LS PWM feature<br>disabled | If this bit is set, automatic PWM discharge on the<br>ECM output is enabled. In case of PWM<br>discharge the Overcurrent recovery feature is<br>disabled, regardless of the setting of<br>CONTROL_2.OC_ECFB. |
|                      | 1         |         | LS PWM feature<br>enabled  |                                                                                                                                                                                                              |

F

onsemi, , and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <a href="http://www.onsemi.com/site/pdf/Patent-Marking.pdf">www.onsemi.com/site/pdf/Patent-Marking.pdf</a>. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or incruit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi