onsemi

Hex Half-Bridge Driver

NCV7723B

The NCV7723B is a six channel half-bridge driver with protection features designed specifically for automotive and industrial motion control applications. The product has independent controls and diagnostics, and the drivers can be operated in forward, reverse, brake, and high impedance states. The device is controlled via a 16 bit SPI interface and is daisy chain compatible. Outputs 1 and 2 can be controlled through an external PWM signal.

Features

Low Quiescent Current Sleep Mode High-SfideaadLbwwï

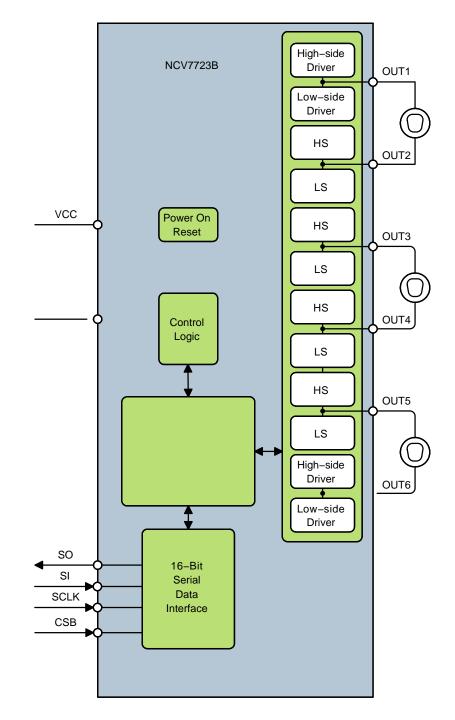
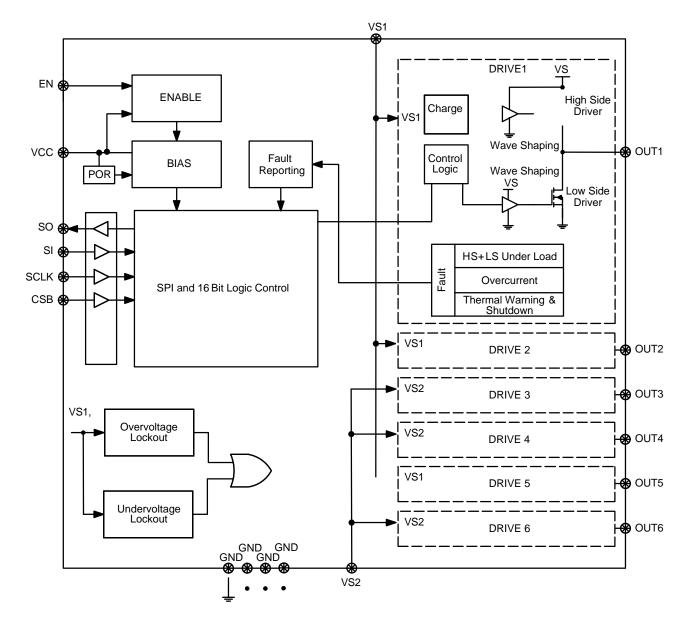



Figure 1. Typical Application

ATTRIBUTES

Characteristic			Value	Unit
Short Circuit Reliability Characterization		AECQ10x	Grade A	
ESD Capability Human Body Model per AEC–Q100–002 Charged Device Model per AEC–Q100–011	VSx, OUTx All Other Pins	Vesd4k Vesd2k Vesd750	≥ ±4.0 kV ≥ ±2.0 kV ≥ ±750 V	
Moisture Sensitivity Level		MSL	MSL2	
Package Thermal Resistance – Still–air Junction–to–Ambient Junction–to–Board	(Note 2) (Note 2)	R _{JA} R _{JBOARD}	32.1 21.8	°C/W °C/W

 Based on JESD51–7, 1.6 mm thick FR4, 2S2P PCB with 600 mm² 2 oz. copper and 18 thermal vias to 80x80 mm 1 oz. internal spreader planes. Simulated with each channel dissipating 0.2 W.

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Min	Max	Unit
Digital Supply Input Voltage	VCCOp	3.15	5.25	V
Battery Supply Input Voltage (VS1 = VS2)	VSxOp	5.5	32	V
DC Output Current	IxOp	-	0.5	А
Junction Temperature	TjOp	-40	125	°C

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

ELECTRICAL CHARACTERISTICS

 $(-40^{\circ}C \leq T_J \leq 150^{\circ}C, \, 5.5 \text{ V} \leq \text{VSx} \leq 40 \text{ V}, \, 3.15 \text{ V} \leq \text{V}_{CC} \leq 5.25 \text{ V}, \, \text{EN} = \text{V}_{CC}, \, \text{unless otherwise specified.})$

Characteristic	Symbol	Conditions	Min	Тур	Max	Unit
POWER SUPPLIES						

Supply Current (VS1 + VS2) Sleep Mode

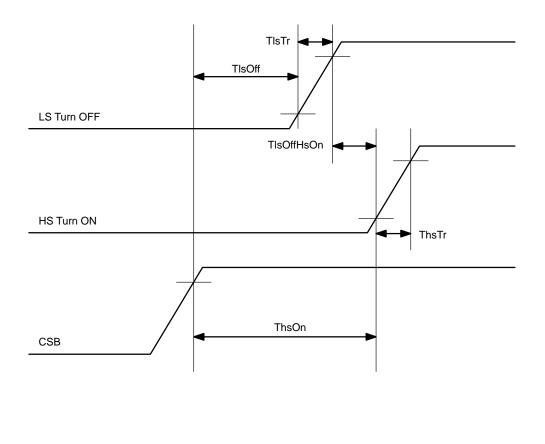
 $\label{eq:continued} \begin{array}{l} \hline \textbf{ELECTRICAL CHARACTERISTICS} \\ (-40^{\circ}C \leq T_J \leq 150^{\circ}C, \\ \hline \textbf{5.5 V} \leq VSx \leq 40 \text{ V}, \\ \hline \textbf{3.15 V} \leq V_{CC} \leq 5.25 \text{ V}, \\ \hline \textbf{EN} = V_{CC}, \\ \hline \textbf{unless otherwise specified.} \\ (\text{continued}) \\ \hline \textbf{C} \leq T_{CC}, \\ \hline \textbf{C} = T_{CC}, \\ \hline \textbf{C} =$

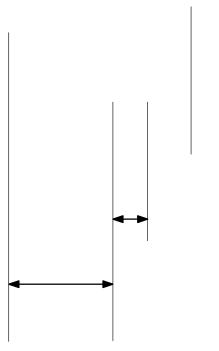
Characteristic	Symbol	Conditions	Min	Тур	Max	Unit
DRIVER OUTPUT CHARACTERISTICS						
Sink Leakage Current	lsnkLkg13.2 IsnkLkg28	V _{CC} = 5 V, EN = 0/5 V OUT (1-6) = VSx = 13.2 V OUT (1-6) = VSx = 28 V	-	-	1.0 2.0	A A
Overcurrent Shutdown Threshold (Source)	IsdSrc	V _{CC} = 5 V, VSx = 13.2 V	-2.0	-1.5	-1.1	А
Overcurrent Shutdown Threshold (Sink)	IsdSnk	V _{CC} = 5 V, VSx = 13.2 V	1.1	1.5	2.0	А

ELECTRICAL CHARACTERISTICS

 $(-40^{\circ}C \leq T_{J} \leq 150^{\circ}C, 5.5 \text{ V} \leq \text{VSx} \leq 40 \text{ V}, 3.15 \text{ V} \leq \text{V}_{CC} \leq 5.25 \text{ V}, \text{ EN} = \text{V}_{CC}, \text{ unless otherwise specified.}) (\text{continued})$

Characteristic	Symbol	Conditions		Min	Тур	Max	Unit
LOGIC OUTPUT SO				-			
Output High	VsoH	ISOURCE = -1 mA		V _{CC} - 0.6	-	-	V
Output Low	VsoL	ISINK = 1.6 mA		-	-	0.4	V
Tri-state Leakage	ItriStLkg	CSB = 5 V		-5	-	5	Α
Tri-state Output Capacitance	ItriStCout	$CSB = V_{CC}, 0 V < V_{CC} < 5.25 V_{CC}$	V (Note 3)	-	I	15	pF
SERIAL PERIPHERAL INTERFACE	-			-		-	-
SCLK Frequency	Fclk		-	-	_	5.0	MHz
SCLK Clock Period	TpClk	V _{CC} = 5 V V _{CC} = 3.3 V	_	200 500		-	ns
SCLK High Time	TclkH		1	85	-	_	ns
SCLK Low Time	TclkL		2	85	-	_	ns
SCLK Setup Time	TclkSup		3, 4	85	-	-	ns
SI Setup Time	TsiSup		11	50	-	-	ns
SI Hold Time	TsiH		12	50	-	-	ns
CSB Setup Time	TcsbSup		5, 6	100	-	-	ns
CSB High Time	TcsbH	(Note 4)	7	5.0	_	_	S
SO enable after CSB falling edge	TenSo		8	_	_	200	ns
SO disable after CSB rising edge	TdisSo		9	_	-	200	ns
SO Rise/Fall Time	TsoR/F	Cload = 40 pF (Note 3)	_	-	10	25	ns
SO Valid Time	TsoV	Cload = 40 pF (Note 3) SCLK ↑ to SO 50%	10	-	50	100	ns
EN Low Valid Time	TenL	V_{CC} = 5 V; EN H \rightarrow L 50% to OUTx turning off 50%	_	10	-	-	S
EN High to SPI Valid	TenHspiV		-	_	_	100	S
SRR Delay Between Consecutive Frames	Tsrr	(Note 5)	_	150	-	-	s


Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.


3. Not production tested.

4. This is the minimum time the user must wait between SPI commands.

5. This is the minimum time the user must wait between consecutive SRR requests.

CHARACTERISTIC TIMING DIAGRAMS

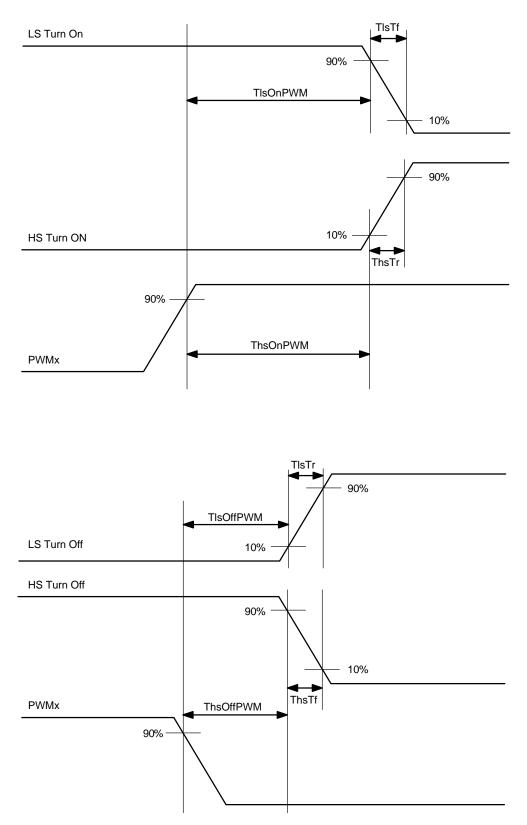


Figure 5. Detailed Driver Timing (OUT1 / OUT2 PWM)

TYPICAL PERFORMANCE GRAPHS

TEMPERATURE (° Figure 7. lqTot vs. Temperature

Figure 8. I(V_{CC}) Active Mode vs. V(V_{CC})

DETAILED OPERATING DESCRIPTION

General Overview

The NCV7723B is comprised of twelve NMOS power drivers. The drivers are arranged as six half-bridge output channels, allowing for three independent full-bridge configured loads. Output control and status reporting is handled via the SPI (Serial Peripheral Interface) communications port. OUT1 and OUT2 can be controlled with an external PWM signal.

Each output is characterized for a typical 0.5 A DC load and has a maximum 2.0 A surge capability (at VSx = 13.2 V). Maximum allowable junction temperature is 150° C and may constrain the maximum load current and/or limit the number of drivers active at once.

An active-high enable function (EN) allows global control of the outputs and provides a low quiescent current sleep mode when the device is not being utilized. An internal pull-down resistor is provided on the input to ensure the device enters sleep mode if the input signal is lost.

After EN transitions from low to high, the V_{CC} POR cycle will proceed and bring the device into normal operation. The device configuration registers can then be programmed via SPI. Bringing EN low clears all registers (no configuration

Table 1. SPI COMMAND INPUT DEFINITIONS

	Channels 6 – 1						
Bit#	Name	Function	Status*	Scope			
15	SRR	Status Register Reset**	1 = Reset	Global Status Reset			
14	HBSEL***	Half Bridge Selection	Reserved	-			
13	ULDSC	Underload Shutdown Control	1 = Enabled	Per Half–Bridge Operation			
12	HBEN6	Enable Half–Bridge 6					
11	HBEN5	Enable Half–Bridge 5					
10	HBEN4	Enable Half–Bridge 4	0 = Hi–Z				
9	HBEN3	Enable Half–Bridge 3	1 = Enabled	Per Half–Bridge			
8	HBEN2	Enable Half–Bridge 2					
7	HBEN1	Enable Half–Bridge 1					
6	HBCNF6	Configure Half-Bridge 6					
5	HBCNF5	Configure Half–Bridge 5					
4	HBCNF4	Configure Half–Bridge 4	0 = LS On, HS Off				
3	HBCNF3	Configure Half–Bridge 3	1 = LS Off, HS On	Per Half–Bridge			
2	HBCNF2	Configure Half–Bridge 2					
1	HBCNF1	Configure Half–Bridge 1	1				

Table 2. SPI STATUS OUTPUT DEFINITIONS

Channels 6 – 1						
Bit#	Name	Function	Status*	Scope		
PRE_15	TSD	Latched Thermal Shutdown	1 = Fault	Global Notification; Per Half-Bridge Operation		
15	OCS	Latched Overcurrent Shutdown	1 = Fault	Global Notification; Per Half-Bridge Operation		
14	PSF	VS1 and/or VS2 Undervoltage or Overvoltage	1 = Fault	Global Notification; Global Operation		

13

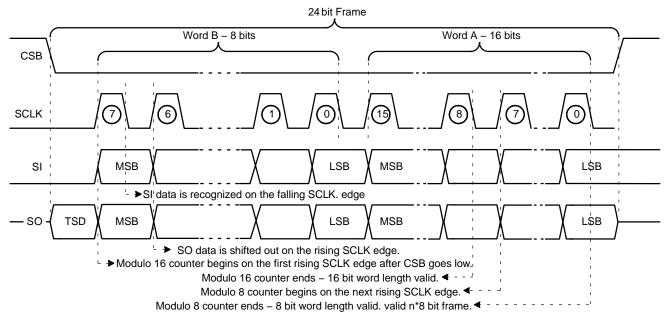
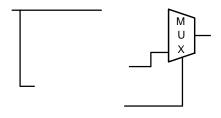


Figure 16. Daisy Chain – 24 bit Frame Format


TSD Bit in Daisy Chain Operation

The SO frame is designed to allow TSD status retrieval in a daisy chain configuration using NCV7723B or other devices with identical SPI functionality. The TSD status bit is OR'd with SI and then multiplexed with the device's usual status data (Figure 17).

CSB is held high and SI and SCLK are held low by the master before the start of the SPI frame. TSD status is immediately available as bit PRE_15 at SO (SO = TSD) when CSB goes low to begin the frame. The usual status data (SO = STA) becomes available after the first rising SCLK edge.

The TSD status automatically propagates through the chain from the SO output of the previous device to the SI input of the next. This is shown in Figures 18 and 19, first without a TSD fault in either device (Figure 18), and then subsequently with a latched TSD fault (TSD = 1) in device "A" propagating through to device "B" (Figure 19).

Since the TSD status of any device propagates automatically through the entire chain, it is not possible to determine which device (or devices) has a fault (TSD = 1). The usual status data from each device will need to be examined to determine where a fault (or faults) may exist.

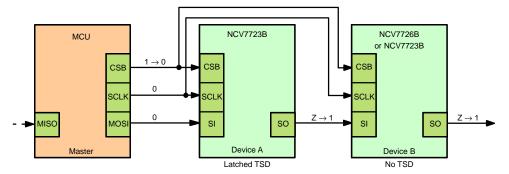


Figure 19. Daisy Chain With TSD Fault

Power Up/Down Control

The V_{CC} supply input powers the device's logic core. A V_{CC} power–on reset (POR) function provides controlled power–up/down. V_{CC} POR initializes the command input and status output registers to their default states (0x00), and ensures that the bridge output and SO drivers maintain Hi–Z as power is applied. SPI communication and normal device operation can proceed once V_{CC} rises above the POR threshold and EN remains high.

The VS1 and VS2 supply inputs power their respective output drivers (refer to Figure 2 and the PIN FUNCTION DESCRIPTION). The VSx inputs are monitored to ensure that the supply stays within the recommended operating range. If the VSx supply moves into either of the VS undervoltage or overvoltage regions, the output drivers are switched to Hi–Z but command and status data is preserved. Output drivers will remain on if OVLO = 0 during an overvoltage condition.

Driver Control

The NCV7723B has the flexibility to control each half-bridge driver channel via SPI. Actual driver output state is determined by the command input and the current fault status bits.

High–side (HSx) and low–side (LSx) drivers of the same channel cannot be active at the same time, and non–overlap delays are imposed when switching between HSx and LSx drivers in the same channel, preventing current shoot–through.

After the device has powered up and the drivers are allowed to turn on, the drivers remain on until commanded off via SPI or until a fault condition occurs.

PWM Control

Outputs 1 and 2 can be controlled in two ways: through normal SPI control (see Table 1) or from an external PWM

DIAGNOSTICS, PROTECTIONS, STATUS REPORTING AND RESET

Overview

The NCV7723B employs diagnostics designed to prevent destructive overstress during a fault condition. Diagnostics are classified as either supervisory or protection functions (Table 3). Supervisory functions provide status information about device conditions. Protection functions provide status information and activate fault management behaviors. Diagnostics resulting in output shutdown and latched status may depend on a qualifier and may require user intervention for output recovery and status memory clear. Diagnostics resulting in output lockout and non–latched status (VSOV or VSUV) may recover and clear automatically. Output configurations can be changed during output lockout. Outputs assume the new configurations or resume the previous configurations when an auto–recover fault is resolved. Table 4 shows output states during faults and output recovery modes, and Table 5 shows the status memory and memory clear modes.

Table 3. DIAGNOSTIC CLASSES AND FUNCTIONS

Name	Class	Function
TSD	Protection	Thermal Shutdown
OCS	Protection	Overcurrent Shutdown
PSF	Protection	Under/overvoltage Lockout (OVLO = 1)
ULD	Protection	Underload Shutdown
HBSTx[1:0]	Supervisory	Half-Bridge X Output Status
TW	Supervisory	Thermal Warning

Fault	Qualifier	OUTx State	OUTx Recovery	OUTx Recovery Scope
TSD	-	\rightarrow Z	Send SRR	All Outputs
OCS	-	\rightarrow Z	Send SRR	All Outputs
PSF – VSOV	OVLO = 1	$\rightarrow Z \rightarrow Y_n \mid Y_{n+1}$	Auto*	All Outputs
	OVLO = 0	Unaffected	-	-
PSF – VSUV	-	$\rightarrow Z \rightarrow Y_n \mid Y_{n+1}$	Auto*	All Outputs
ULD	ULDSC = 1	\rightarrow Z	Send SRR	All Outputs
	ULDSC = 0	Unaffected	-	-
TW	-	Unaffected	-	-

*OUTx returns to its previous state (Yn) or new state (Yn+1) if fault is removed.

Table 5. STATUS MEMORY VS. FAULT AND MEMORY CLEAR

Fault	Qualifier	Status Memory	Memory Clear	Memory Clear Scope
TSD	-	Latched	Send SRR	Global
OCS	-	Latched	Send SRR	Global
PSF – VSOV	OVLO = X	Non-Latched	Auto*	Global
PSF – VSUV	-	Non-Latched	Auto*	Global
ULD	ULDSC = X	Latched	Send SRR	Global
TW	-	Non-Latched	Auto*	Global

*Status memory returns to its no-fault state if fault is removed.

Status Information Retrieval

Current status information is retrieved during each SPI frame. To preserve device configuration and output states, the previous SI data pattern must be sent during the status retrieval frame.

Status information is prevented from being updated during a SPI frame but new status becomes available after CSB goes high at the end of the frame provided the frame did not contain an SRR request. Status information includes both global and per channel fault notification. To determine the channel(s) affected after detecting a global fault, examine driver output status and input configuration.

Status Register Reset SRR

Sending SRR = 1 clears status memory and re-activates faulted outputs for all channels. The previous SI data pattern must be sent with SRR to preserve device configuration and output states.

At the rising edge of CSB, the SRR function is activated and an internal timer (Tsrr) is started. Tsrr is the minimum time the user must wait between consecutive SRR requests. If a fault is still present when SRR is sent, protection will be re–engaged and shutdown will recur. The status registers can also be reset by toggling the EN pin or by VCC power–on reset.

Diagnostics Details

The following sections describe individual diagnostics

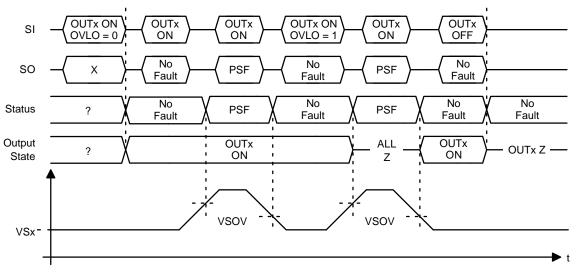


Figure 22. Overvoltage Timing

Overcurrent Shutdown

Global and per Channel Notification Per Half Bridge Operation

Overcurrent detection and shutdown control is provided by monitoring each HS and LS driver. Overcurrent timing is shown in Figure 23. Overcurrent in either driver starts a channel's overcurrent delay timer (TdOc). If overcurrent exists after the delay, both drivers are latched off and the global overcurrent (OCS) status bit is set. The channel's corresponding HBSTx[1:0] bits are also set to "01" to indicate an OCS fault. Note that OCS fault reporting has priority over other faults as shown in Figure 14. The global OCS bit and individual channel bits are cleared and channels are re–activated by sending SRR = 1.

A persistent overcurrent cause should be resolved prior to re–activation to avoid repetitive stress on the drivers.

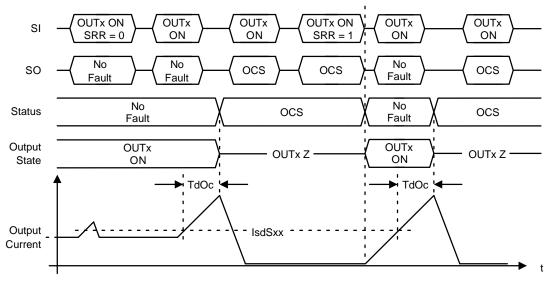


Figure 23. Overcurrent Timing

Underload Shutdown

Global and per Channel Notification Global Shutdown Control, Per Half Bridge Operation

Underload detection and shutdown control is provided by monitoring each half bridge driver. Underload timing is shown in Figure 24. Underload at any driver starts the global underload delay timer. If underload occurs in another channel after the global timer has been started, the delay for any subsequent underload will be the remainder of the timer.

If underload exists after the global delay timer and if the

Thermal Warning and Thermal Shutdown

Global Notification, Per Half Bridge Operation Thermal warning (TW) and thermal shutdown (TSD)

THERMAL PERFORMANCE ESTIMATES

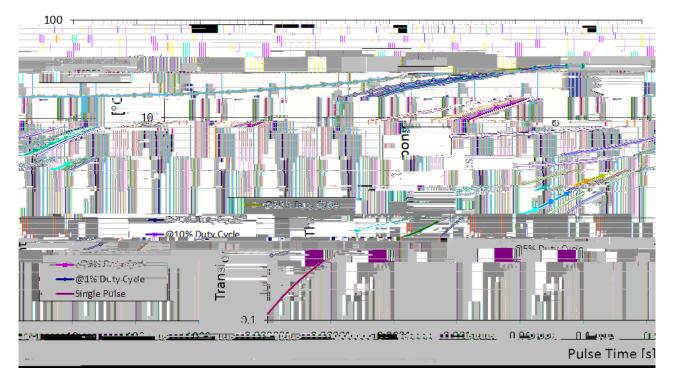
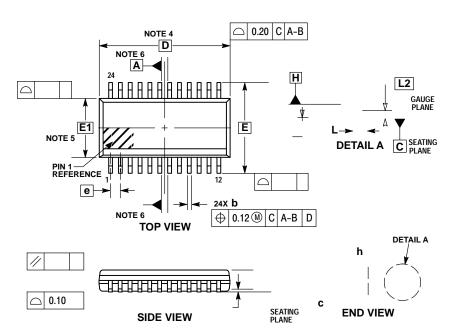
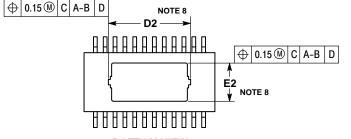
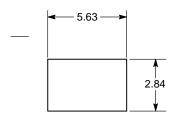




Figure 26. Transient R(t) vs. Pulse Time for 2 oz Spreader



BOTTOM VIEW

SOLDERING FOOTPRINT

- NOTES:
- DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
 CONTROLLING DIMENSION: MILLIMETERS. 3. DIMENSION b DOES NOT INCLUDE DAMBAR
- PROTRUSION. DAMBAR PROTRUSION SHALL BE 0.10 MAX. AT MMC. DAMBAR CANNOT BE LOCATED ON THE LOWER RADIUS OF THE FOOT. DIMENSION & APPLIES TO THE FLAT SECTION OF THE LEAD BETWEEN 0.10 TO 0.25 FROM THE LEAD TIP.
- FROM THE LEAD TIP.
 DIMENSION D DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.15 PER SIDE. DIMENSION D IS DETERMINED AT DATUM PLANE H.
 DIMENSION E1 DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR DROTBUISION SHALL NOT EXCEED 0.25 PER
- OR PROTRUSION SHALL NOT EXCEED 0.25 PER SIDE. DIMENSION E1 IS DETERMINED AT DA-
- TUM PLANE H. 6. DATUMS A AND B ARE DETERMINED AT DATUM
- 7.
- DATUMS A AND B ARE DETERMINED AT DATE: PLANE H. A1 IS DEFINED AS THE VERTICAL DISTANCE FROM THE SEATING PLANE TO THE LOWEST POINT ON THE PACKAGE BODY. CONTOURS OF THE THERMAL PAD ARE UN-CONTROLLED WITHIN THE REGION DEFINED SY DIMENSIONS DO AND F2 8. BY DIMENSIONS D2 AND E2.

MILLIMETERS	
MIN	MAX
	1.70
0.00	0.10
0.19	0.30
0.09	0.20
	MIN 0.00 0.19

D2	5.28	5.58
E1	3.90	BSC
E2	2.44	2.64
е	0.65 BSC	
h	0.25	0.50
L	0.40	0.85
11	1.00 BEE	

0.25 BSC 00

L2 M

0

onsemi, , and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or incruit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi