e '

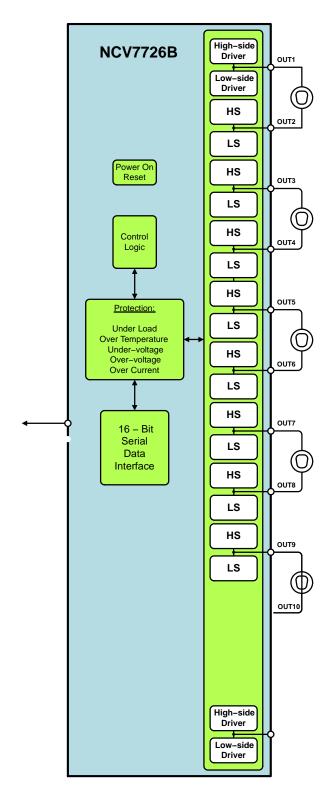


Figure 1. Typical Application

MAXIMUM RATINGS (Voltages are with respect to GND)

Symbol		Rating	Value	Unit
VSxdcMax VSxac	VSx Pin Voltage	(VS1, VS2) (DC) (AC), t < 500 ms, lvsx > -2 A	-0.3 to 40 -1.0	V
VioMax	I/O Pin Voltage	(Vcc, SI, SCLK, CSB, SO, EN)	-0.3 to 5.5	V
VoutxDc VoutxAc	OUTx Pin Voltage	(DC) (AC) (AC), t< 500 ms, IOUTx > -1.1 A (AC), t< 500 ms, IOUTx < 1 A	-0.3 to 40 -0.3 to 40 -1.0 1.0	V
loutxlmax	OUTx Pin Current	(OUT1,, OUT12)	-2.0 to 2.0	А
Τ _J	Junction Temperatu	ure Range	-40 to 150	С
Tstr	Storage Temperatu	re Range	-55 to 150	С
(Note 1)	Peak Reflow Solde	ring Temperature: Pb-free 60 to 150 seconds at 217 C	260	С

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.
See or download **onsemi**'s Soldering and Mounting Techniques Reference Manual, <u>SOLDERRM/D</u>.

ATTRIBUTES

Symbol	Characteristic		Value	Unit
AECQ10x	Short Circuit Reliability Characterization		Grade A	-
Vesd4k Vesd2k Vesd750	ESD Capability Human Body Model per AEC–Q100–002 All Other Pins Charged Device Model per AEC–Q100–011	VSx, OUTx	4.0 kV 2.0 kV 750 V	
MSL	Moisture Sensitivity Level		MSL2	-
R _{θJA} R _{ΨJBOARD}	Package Thermal Resistance – Still–air Junction–to–Ambient Junction–to–Board (Note 2)	(Note 2)	29.4 10.5	C/W C/W

2. Based on JESD51-7, 1.6 mm thick FR4, 2S2P PCB with 600 mm² 2 oz. copper and 18 thermal vias to 80x80 mm 1 oz. internal spreader planes. Simulated with each channel dissipating 0.2 W.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter		Max	Unit
VCCOp	VCCOp Digital Supply Input Voltage		5.25	V
VSxOp	VSxOp Battery Supply Input Voltage (VS1 = VS2)		32	V
IxOp	DC Output Current	-	0.5	А
TjOp	Junction Temperature	-40	125	С

ELECTRICAL CHARACTERISTICS

(-40 C $\,$ T_J $\,$ 150 C, 5.5 V $\,$ VSx $\,$ 40 V, 3.15 V $\,$ V_{CC} $\,$ 5.25 V, EN = V_{CC}, unless otherwise specified.)

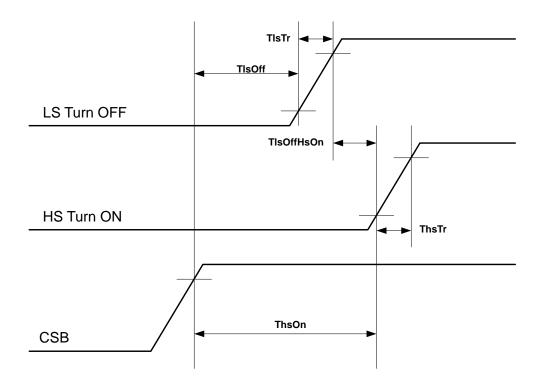
Symbol	Characteristic	Conditions	Min	Тур	Max	Unit
POWER SUP	PLIES					
lqVSx85	Supply Current (VS1 + VS2) Sleep Mode	VS1 = VS2 = 13.2V, V _{CC} = 0 V -40 C to 85 C	_	1.0	2.5	μA
IvsOp	Supply Current (VS1 + VS2) Active Mode	EN = V _{CC} , 5.5V < VSx < 28 V No Load, All Outputs Off	-	2.5	5.0	mA
IqV _{CC}	Supply Current (Vcc) Sleep Mode	$CSB = V_{CC}, EN = SI = SCLK = 0 V$ -40 C to 85 C EN = CSB = V _{CC} , SI = SCLK = 0 V	-	1.0	2.5	μΑ
IV _{CC} Op	Active Mode	All Outputs Off	-	1.5	3.0	mA
lqTot	Total Sleep Mode Current I(VS1) + I(VS2) + I(VCC)	Sleep Mode, -40 C to 85 C VS1 = VS2 = 13.2 V, No Load	-	2.0	5.0	μΑ
V _{CC} por	VCC Power-on Reset Threshold	V _{CC} increasing	-	2.70	2.90	V
VSxuv	VSx Undervoltage Detection Threshold	VSx decreasing	3.5	4.1	4.5	V
VSxuHys	VSx Undervoltage Detection Hysteresis		100	-	450	mV
VsXov	VSx Overvoltage Detection Threshold	VSx increasing	32	36	40	V
VSxoHys	VSx Overvoltage Detection Hysteresis		1	2.5	4	V

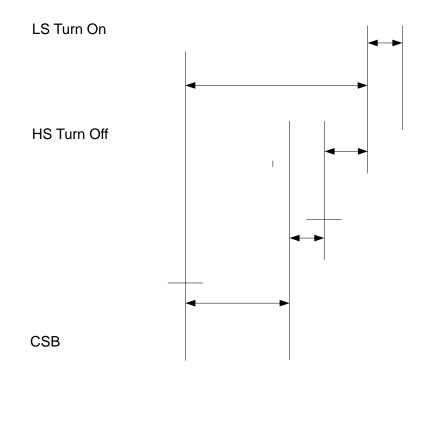
DRIVER OUTPUT CHARACTERISTICS

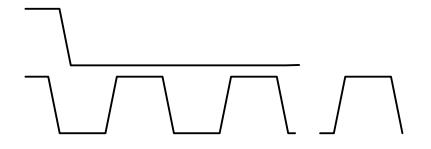
R_{DSon}HS Output High R_{DS(on)} (source)

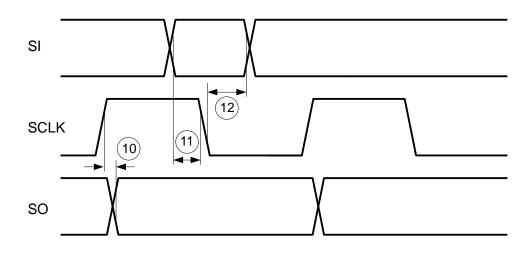
 $\begin{array}{c} \textbf{ELECTRICAL CHARACTERISTICS} \text{ (continued)} \\ (-40 \ C \ T_J \ 150 \ C, \ 5.5 \ V \ VSx \ 40 \ V, \ 3.15 \ V \ V_{CC} \ 5.25 \ V, \ EN = V_{CC}, \ unless \ otherwise \ specified.) \end{array}$

Symbol	Characteristic	Conditions	Min	Тур	Max	Unit
DRIVER OUT	PUT SWITCHING CHARACTERISTICS					
ThsTr	High Side Rise Time	Vs = 13.2 V, R_{load} = 70 Ω	-	4.0	8.0	μs
ThsTf	High Side Fall Time	Vs = 13.2 V, R_{load} = 70 Ω	-	2.0		


ELECTRICAL CHARACTERISTICS (continued)


 $(-40 \text{ C} \text{ T}_{\text{J}} \text{ 150 C}, 5.5 \text{ V} \text{ VSx} 40 \text{ V}, 3.15 \text{ V} \text{ V}_{\text{CC}} 5.25 \text{ V}, \text{EN} = \text{V}_{\text{CC}}$, unless otherwise specified.)


Symbol	Characteristic	Conditions	Timing Charts #	Min	Тур	Мах	Unit
SERIAL PER	IPHERAL INTERFACE						
Fclk	SCLK Frequency		-	-	-	5.0	MHz
TpClk	SCLK Clock Period	V _{CC} = 5 V V _{CC} = 3.3 V	-	200 500		_ _	ns
TclkH	SCLK High Time		1	85	-	-	ns
TclkL	SCLK Low Time		2	85	-	-	ns
TclkSup	SCLK Setup Time		3, 4	85	-	-	ns
TsiSup	SI Setup Time		11	50	-	-	ns
TsiH	SI Hold Time		12	50	-	-	ns
TcsbSup	CSB Setup Time		5, 6	100	-	-	ns
TcsbH	CSB High Time	(Note 4)	7	5.0	-	-	μs
TenSo	SO enable after CSB falling edge		8	-	-	200	ns
TdisSo	SO disable after CSB rising edge		9	-	-	200	ns
TsoR/F	SO Rise/Fall Time	Cload = 40 pF (Note 3)	-	-	10	25	ns
TsoV	SO Valid Time	Cload = 40 pF (Note 3) SCLK to SO 50%	10	-	50	100	ns
TenL	EN Low Valid Time	V _{CC} = 5V; EN H L 50% to OUTx turning off 50%	-	10	-	-	μs
TenHspiV	EN High to SPI Valid		-	-	-	100	μs
Tsrr	SRR Delay Between Consecutive Frames	(Note 5)	-	150	-	-	μs


Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.
3. Not production tested.
4. This is the minimum time the user must wait between SPI commands.
5. This is the minimum time the user must wait between consecutive SRR requests.

CHARACTERISTIC TIMING DIAGRAMS

TYPICAL CHARACTERISTICS

TEMPERATURE (C)
Figure 6. lqTot vs. Temperature

 $$V_{CC}$$ Figure 7. I(V_{CC}) Active Mode vs. V(V_{CC})

DETAILED OPERATING DESCRIPTION

General Overview

The NCV7726B is comprised of twenty four NMOS power drivers. The drivers are arranged as twelve half bridge output channels, allowing for six independent full bridge configured loads. Output control and status reporting is handled via the SPI (Serial Peripheral Interface) communications port.

Each output is characterized for a typical 0.5 A DC load

Table 1. SPI COMMAND INPUT DEFINITIONS

		Channels 12 –	7 (Input Bit # 14 = 1)	
Bit#	Name	Function	Status*	Scope
15	SRR	Status Register Reset**	1 = Reset	Status Reset per HBSEL
14	HBSEL	Channel Group Select	1 = HB [12:7]	1 = HB [12:7] 0 = HB [6:1]
13	ULDSC	Underload Shutdown Control	1 = Enabled	Enabled per HBSEL ; Per Half–Bridge Operation
12	HBEN12	Enable Half–Bridge 12		
11	HBEN11	Enable Half-Bridge 11		
10	HBEN10	Enable Half–Bridge 10	0 = Hi–Z	
9	HBEN9	Enable Half–Bridge 9	1 = Enabled	Per Half–Bridge
8	HBEN8	Enable Half–Bridge 8		
7	HBEN7	Enable Half–Bridge 7		
6	HBCNF12	Configure Half-Bridge 12		
5	HBCNF11	Configure Half–Bridge 11		
4	HBCNF10	Configure Half-Bridge 10	0 = LS On, HS Off	
3	HBCNF9	Configure Half–Bridge 9	1 = LS Off, HS On	Per Half–Bridge
2	HBCNF8	Configure Half–Bridge 8		
1	HBCNF7	Configure Half–Bridge 7		
0	OVLO	VSx Overvoltage Lockout	1 = Enabled	Global Lockout
		Channels 6 – 1	(Input Bit # 14 = 0)	
Bit#	Name	Function	Status*	Scope
15	SRR	Status Register Reset**	1 = Reset	Status Reset per HBSEL
14	HBSEL	Channel Group Select	0 = HB [6:1]	1 = HB [12:7] 0 = HB [6:1]
13	ULDSC	Underload Shutdown Control	1 = Enabled	Enabled per HBSEL ; Per Half–Bridge Operation
12	HBEN6	Enable Half–Bridge 6		
11	HBEN5	Enable Half–Bridge 5		
10	HBEN4	Enable Half–Bridge 4	0 = Hi–Z	
9	HBEN3	Enable Half–Bridge 3	1 = Enabled	Per Half–Bridge
8	HBEN2	Enable Half–Bridge 2		
7	HBEN1	Enable Half–Bridge 1		
6	HBCNF6	Configure Half–Bridge 6		
5	HBCNF5	Configure Half–Bridge 5	1	
4	HBCNF4	Configure Half–Bridge 4	0 = LS On, HS Off	
3	HBCNF3	Configure Half–Bridge 3	1 = LS Off, HS On	Per Half–Bridge
2	HBCNF2	Configure Half–Bridge 2	1	
1	HBCNF1	Configure Half–Bridge 1	1	
0	OVLO	VSx Overvoltage Lockout	1 = Enabled0	=

i

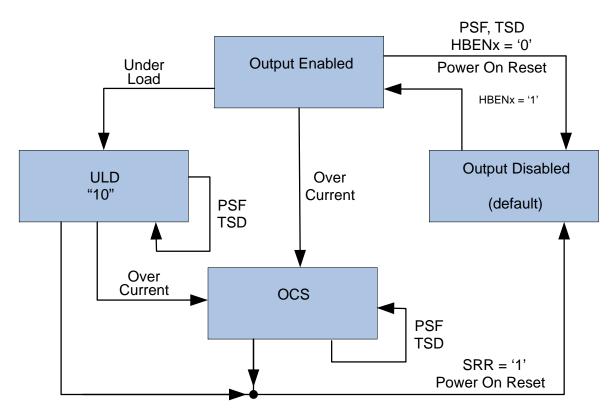

		Channels 12 – 7 (If Prev	ious Input Bit # 14 = 1)	
Bit#	Name	Function	Status*	Scope
PRE_15	TSD	Latched Thermal Shutdown	1 = Fault	Global Notification; Per Half–Bridge Operation
15	OCS	Latched Overcurrent Shutdown	1 = Fault	Notification per HBSEL ; Per Half–Bridge Operation
14	PSF	VS1 and/or VS2 Undervoltage or Overvoltage	1 = Fault	Global Notification and Global Operation
13	ULD	Underload Detect	1 = Fault	Notification per HBSEL ; Per Half–Bridge Operation
12	HBST12 [1:0]	Half-Bridge 12 Output Status		
11				
10	HBST11 [1:0]	Half-Bridge 11 Output Status		
9				
8	HBST10 [1:0]	Half-Bridge 10 Output Status		
7			0x00b – Output Disabled 0x01b – OCS	Dan Half Dridge
6	HBST9 [1:0]	Half-Bridge 9 Output Status	0x10b – ULD 0x11b – Output Enabled	Per Half–Bridge
5				
4	HBST8 [1:0]	Half-Bridge 8 Output Status]	
3	1			
2	HBST7 [1:0]	Half-Bridge 7 Output Status]	
1	1			
0	TW	Thermal Warning	1 = Fault	Global Notification; Per Half–Bridge Operation

Table 2. SPI STATUS OUTPUT DEFINITIONS

*All status output bits are set to 0 at Vcc power–on reset (POR). HBSTx[1:0] bits are priority encoded to provide the status information of each of the half–bridge outputs. Figure 13 shows the priority encod-ing state diagram for the HBSTx[1:0] bits.

Table 2. SPI STATUS OUTPUT DEFINITIONS

Channels 6 – 1 (If Previous Input Bit # 14 = 0)					
Bit#	Name	Function	Status*	Scope	

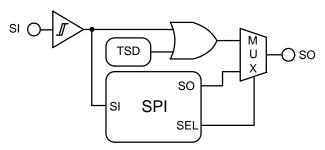
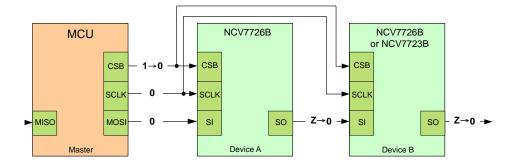



Figure 16. TSD SPI Link

DIAGNOSTICS, PROTECTIONS, STATUS REPORTING AND RESET

Overview

The NCV7726B employs diagnostics designed to prevent destructive overstress during a fault condition. Diagnostics are classified as either supervisory or protection functions (Table 3). Supervisory functions provide status information about device conditions. Protection functions provide status information and activate fault management behaviors.

Diagnostics resulting in output shutdown and latched status may depend on a qualifier and may require user

intervention for output recovery and status memory clear. Diagnostics resulting in output lockout and non latched status (VSOV or VSUV) may recover and clear automatically. Output configurations can be changed during output lockout. Outputs assume the new configurations or resume the previous configurations when an auto recover fault is resolved. Table 4 shows output states during faults and output recovery modes, and Table 5 shows the status memory and memory clear modes.

Table 3. DIAGNOSTIC CLASSES AND FUNCTIONS

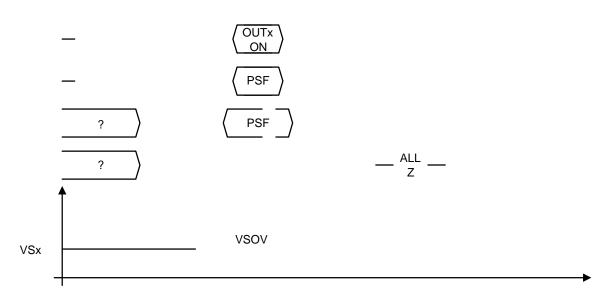
Name	Class	Function
TSD	Protection	Thermal Shutdown
OCS	Protection	Overcurrent Shutdown
PSF	Protection	

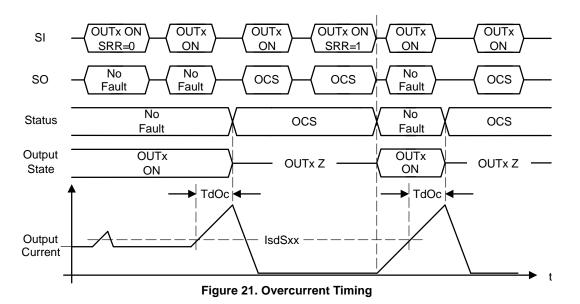
Status Information Retrieval

Current status information as selected by HBSEL is retrieved during each SPI frame. To preserve device configuration and output states, the previous SI data pattern must be sent during the status retrieval frame.

Status information is prevented from being updated

Overvoltage Lockout


Global Notification, Global Operation


Overvoltage detection and lockout control is provided by monitoring the VS1 and VS2 supply inputs. Overvoltage hysteresis is provided to ensure clean detection transitions. Overvoltage timing is shown in Figure 20.

Overvoltage at either VSx input turns off all outputs if the overvoltage lockout input bit is set (OVLO = 1, HBSEL = X), and sets the power supply fail (PSF) status bit (see Tables 4 and 5). The outputs return to their previously

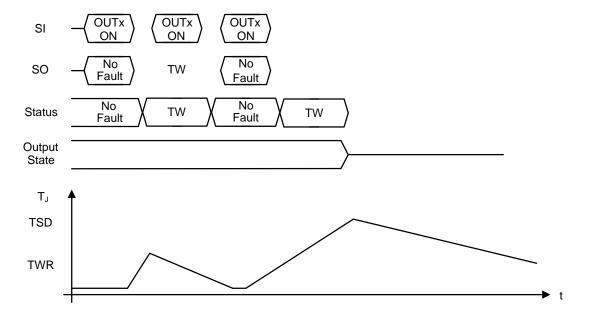
programmed state and the PSF status bit is cleared when VSx falls below the hysteresis voltage level. Output enable and configuration states can also be programmed during an overvoltage lockout event but will not change state until VSx falls below the overvoltage threshold level.

To reduce stress, it is recommended to operate the device with OVLO bit asserted to ensure that the drivers turn off during a load dump scenario. If OVLO = 0 during an overvoltage condition, outputs will remain on and the PSF status bit will be set.

Underload Shutdown

Global and per Channel Notification per HBSEL Shutdown Control per HBSEL Per Half–Bridge Operation

Underload


Thermal Warning and Thermal Shutdown

Global Notification, Per Half-Bridge Operation

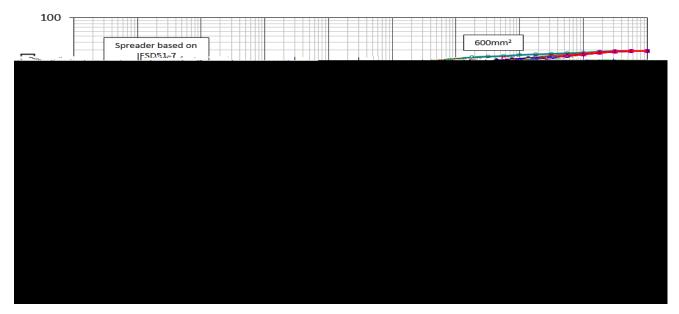
Thermal warning (TW) and thermal shutdown (TSD) detection and control are provided for each half bridge by monitoring the driver pair's thermal sensor. Thermal hysteresis is provided for each of the warning and shutdown functions to ensure clean detection transitions. Software polling of the TW bit allows for avoidance of thermal shutdown since TW notification precedes TSD notification. Thermal warning and shutdown timing is shown in Figure 23.

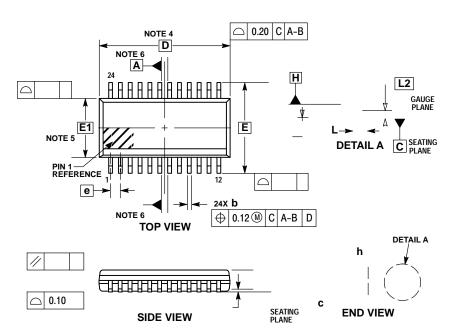
The TW status bit is set when a half bridge's sensor temperature exceeds the warning level ($T_J > Twr$), and the bit is automatically cleared when sensor temperature falls below the warning hysteresis level ($T_J < TwHy$). A channel's output state is unaffected by TW.

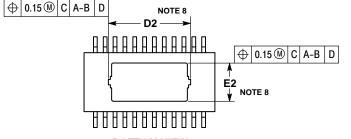
When sensor temperature exceeds the shutdown level ($T_J > Tsd$), the channel's HS and LS drivers are latched off, the TW bit is/remains set, and the TSD (PRE_15) bit is set. The TSD bit is cleared and all affected channels are re activated ($T_J < TsdHy$) by sending SRR = 1. The channel group select (HBSEL) input bit determines which channels are affected by SRR.

τw

THERMAL PERFORMANCE ESTIMATES

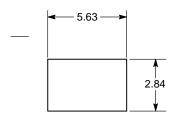



Figure 24. Transient R(t) vs. Pulse Time for 2 oz Spreader


ORDERING INFORMATION

Device	Package	Shipping [†]
NCV7726DQBR2G	SSOP24 EP (Pb–Free)	2,500 / Tape & Reel

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, <u>BRD8011/D</u>.



BOTTOM VIEW

SOLDERING FOOTPRINT

- NOTES:
- DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
 CONTROLLING DIMENSION: MILLIMETERS. 3. DIMENSION b DOES NOT INCLUDE DAMBAR
- PROTRUSION. DAMBAR PROTRUSION SHALL BE 0.10 MAX. AT MMC. DAMBAR CANNOT BE LOCATED ON THE LOWER RADIUS OF THE FOOT. DIMENSION 6 APPLIES TO THE FLAT SECTION OF THE LEAD BETWEEN 0.10 TO 0.25 FROM THE LEAD TIP.
- FROM THE LEAD TIP.
 DIMENSION D DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.15 PER SIDE. DIMENSION D IS DETERMINED AT DATUM PLANE H.
 DIMENSION E1 DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR DROTBUISION SHALL NOT EXCEED 0.25 PER
- OR PROTRUSION SHALL NOT EXCEED 0.25 PER SIDE. DIMENSION E1 IS DETERMINED AT DA-
- TUM PLANE H. 6. DATUMS A AND B ARE DETERMINED AT DATUM
- 7.
- DATUMS A AND B ARE DETERMINED AT DATE: PLANE H. A1 IS DEFINED AS THE VERTICAL DISTANCE FROM THE SEATING PLANE TO THE LOWEST POINT ON THE PACKAGE BODY. CONTOURS OF THE THERMAL PAD ARE UN-CONTROLLED WITHIN THE REGION DEFINED SY DIMENSIONS DO AND F2 8. BY DIMENSIONS D2 AND E2.

MILLIMETERS			
MIN MAX			
	1.70		
0.00	0.10		
0.19	0.30		
0.09	0.20		
	MIN 0.00 0.19		

D2	5.28	5.58
E1	3.90 BSC	
E2	2.44	2.64
е	0.65 BSC	
h	0.25	0.50
L	0.40	0.85
11	1.00 BEE	

0.25 BSC 0° 8 8

L2 M

0

onsemi, , and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or incruit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi